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Integrable Model for Interacting Electrons in Metallic Grains
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We find an integrable generalization of the BCS model with nonuniform Coulomb and pairing inter-
action. The Hamiltonian is integrable by construction since it is a functional of commuting operators;
these operators, which therefore are constants of motion of the model, contain the anisotropic Gaudin
Hamiltonians. The exact solution is obtained diagonalizing them by means of Bethe ansatz. Uniform
pairing and Coulomb interaction are obtained as the “isotropic limit” of the Gaudin Hamiltonians. We
discuss possible applications of this model to a single grain and to a system of few interacting grains.
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Introduction and summary of the results.—Progress in
nanotechnology has opened up theoretical investigations
on the behavior of disordered interacting systems of small
size [1]. Recently, the I-V characteristic measurements of
Ralph, Black, and Tinkham [2] on small Al dots stimulated
the theoretical debate on how to characterize the physical
properties of small metallic grains, such as superconduc-
tivity and ferromagnetism [3,4]. Because of the chaoticity
of the single particle wave functions [1,3], the Hamiltonian
of these systems reads
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(Here and in the following, sums over spins s, s0 are
implied.) The quantum numbers i, s label a shell of
doubly degenerate single particle energy levels with energy
ei and annihilation operator cis; nis :� c

y
iscis; Sa, a �

x, y, z, are 2 3 2 spin matrices; dE is the average level
spacing, and ET the Thouless energy. The universal part of
the Hamiltonian (1) (namely the first four terms) describes
the pairing attraction, the electrostatic interaction and the
ferromagnetic instability, respectively.

The superconducting fluctuations [4] can be taken into
account by employing the BCS model [5,6] [namely tak-
ing the first two terms in Eq. (1)]. Richardson and Sher-
man (RS) [7] constructed the exact solution of the BCS
model by a procedure close in spirit to the coordinate Bethe
ansatz (BA). The knowledge of the exact eigenstates and
eigenvalues of the BCS model has been crucial to estab-
lish physically relevant observables [8]. The integrability
of the model has been proved [9,10] to be deeply related
to the integrability of the isotropic Gaudin magnet [11]:
the BCS model can be expressed as a certain combination
[see Eq. (9) below] of its integrals of motion, which con-
tain Gaudin Hamiltonians. Relations with conformal field
theory and disordered vertex models were investigated in
Refs. [12,13].
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Many properties of metallic grains in a normal state
(negligible superconducting fluctuations) can be described
by the orthodox model [1,14] [i.e., taking the first and the
third terms of the Hamiltonian (1)]. This arises by assum-
ing uniform Coulomb interaction. Magnetic phenomena
like the mesoscopic Stoner instability [3] can be studied
by means of the exchange contribution to the Hamiltonian
[the fourth term in Eq. (1)]. The terms proportional to
dE2�ET correspond to nonuniform Coulomb interaction
[15]. Although they lose importance with the increasing
conductance of the system, these corrections gain physi-
cal relevance due to the typically low relaxation rate of the
excitations in a small dot. In fact, the corrections to the
orthodox model induce “fluctuations” which can explain
how nonequilibrium excitations decay in the dot [16,17].
This results in the formation of clusters of resonance peaks
in the tunneling spectroscopy experiments [2].

In this paper we present an integrable generalization of
the BCS Hamiltonian with nonuniform pairing coupling
gij and solve it exactly. Besides the nonuniform pairing,
the Hamiltonian contains a nonuniform Coulomb interac-
tion Uij ; gij and Uij are fixed according to Eqs. (3). We
shall see that the inclusion of certain O �dE2�ET� terms
leads to our integrable model. The integrable Hamiltonian
we solve is
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where the couplings are8><
>:
gij � 2qK�´i 2 ´j�� sinhq�ui 2 uj�,

i fi j

4Uij � A 1 qK�´i 2 ´j� cothq�ui 2 uj�,

gjj � 2bj , 4Ujj � A 1 bj , (3)

where 2bj � 2qK
P
ifij�´i 2 ´j� cothq�ui 2 uj� 1 C

[18]. For generic choices of bj , the single particle
energies ´j must be shifted by 2bj 1 4

P
ifij Ui,j in order
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to have integrability. The parameters A, K , and C are
arbitrary real constants, while q can be real or imaginary.
The BCS Hamiltonian, including a tunable capacitive
coupling can be obtained from (2) in the isotropic limit
q ! 0. Nonuniform coupling constants are obtained for
generic q, and uj being monotonic functions of ´j . For
real q, the arising gij can be made nearly uniform for
levels within an energy cutoff ED , and exponentially
suppressed otherwise; correspondingly, Uij can be made
nearly uniform [as specified in Eqs. (20) below].

The proof of the integrability of the Hamiltonian (2) pro-
ceeds along the two following steps. (i) First we note
the factorization [19] of the eigenstates of the Hamil-
tonian (2): jC� � jCN � ≠ jFM� with eigenvalue E �
EN 1 EM ; where jCN � is the eigenstate of the Hamilto-
nian HN projected on the subspace with N time-reversed
pairs; jFM� is the Fock state projected on the blocked M
singly occupied levels. The solution of the corresponding
Hamiltonian HM is easily obtained [20] as HM jFM� �
�
P
i ´i 1

P
ij Uij 2 JS�S 1 1�� jFM�. (ii) Then Hamil-

tonian (2) is integrable if and only if HN is integrable.
The HamiltonianHN is obtained by inverting the procedure
presented in Ref. [10]: First, we modify the constants of
motion (of the BCS model) to commuting operators con-
taining the anisotropic Gaudin models (the isotropic ones
being considered in [10]); then we define the Hamiltonian
in terms of these operators (HN is therefore integrable by
construction). We discuss some choices of �uj�, K , and
A leading to physically relevant Hamiltonians. The exact
solution of HN is found by diagonalizing the integrals of
motion through BA [11]. The exact eigenfunctions and
eigenvalues CN , EN are

CN �
NY

a�1

VX
j�1

qc
y
j"c

y
j#

sinhq�va 2 uj�
j0� , (4)

EN � qK
VX
j�1

NX
a�1

´j cothq�va 2 uj� 1 AN2 ; (5)

j0� is the electronic vacuum state and V is the number of
levels. The quantities va fulfill the equations
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Our results can be applied to describe a system of N
grains, since their Hamiltonian can be written (after a suit-
able relabeling of the levels) in the form (2). For distinct
grains gjk describe Cooper pair tunneling, and Ujk the in-
tergrain Coulomb interaction. We require gij to decay both
with intergrain distance and level separation. This can be
fulfilled with uj fixed by Eqs. (22) and (23).

The present paper is laid out as follows. First we discuss
the integrability of the model HN ; then its exact solution is
5760
presented. This will complete the study of the integrability
of the Hamiltonian (2). Finally, we will explain how our
model can be applied to describe single as well as many
interacting grains.

Integrability.—The BCS Hamiltonian can be written in
terms of the spin-1�2 realization of su�2�:
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constants of motion are written in terms of isotropic
Gaudin Hamiltonians J̃j ,

t̃j � Szj 2 gJ̃j ; J̃j �
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Sj ? Sk
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. (8)

The t̃j mutually commute and we have �t̃j , t̃k� �
�H, t̃j� � 0 for all i, j [ �1, …, V�, because the BCS
Hamiltonian can be written in terms of the t̃j only:

HBCS �
X
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X
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t̃j t̃k . (9)

Our approach is now to modify the integrals of motion (8)
and then to construct an integrable BCS-like model (which
turns out to be characterized by a nonuniform pairing)
following formula (9):
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The ansatz for the modified integrals tj is
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where the operators Jj are anisotropic Gaudin Hamiltoni-
ans (the isotropic case corresponding towx

ij � w
y
ij � wz

ij).
These operators mutually commute if
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where (12) emerges from imposing �Ji , Jj� � 0 [11].
The other condition arises from �Szi , Jj� 1 �Ji , S

z
j � � 0.

We furthermore postulate particle number conservation,
which in the spin picture means �

PV
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z
i , Jj� � 0 for all
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The last equation reduces the anisotropy to the XXZ-type
and Eqs. (12) finally become

wijyjk 1 wjiyik � wikwjk , yij :� wz
ij . (15)
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The solution of Eqs. (15) (see Ref. [11]) is

yjk � qK cothq�uj 2 uk� ,

wjk �
qK

sinhq�uj 2 uk�
, (16)

where uj are arbitrary complex parameters such that
yjk ,wjk are real. The transition from hyperbolic to
trigonometric functions in the solution (16) is gained
through the choice q � i, with real K , uj . The cubic and
quartic terms in Sa

j [obtained from formula (10)] vanish
for the antisymmetry of yjk . We finally obtain
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where the couplings are given in Eqs. (3). Up to a constant,
the Hamiltonian (2) (projected on doubly occupied states)
is recovered writing back the spin operators in terms of
creation and annihilation operators.

Exact solution.—The exact solution of the anisotropic
Gaudin model for wij and yij fixed by Eqs. (16) was ob-
tained in Ref. [11]. The same procedure can be applied
to diagonalize tj . The eigenfunctions of tj defined in
Eq. (11) are written in the form
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The vacuum j0� corresponds to j #, . . . , #�; the prime on the
sums means the indices run in the range �1, . . . , V�n� j�.
Imposing that jCj� is an eigenstate of tj we find a set
of equations which c�� ji�� and e�� ji�� must fulfill. For
a suitable change of variables these conditions are trans-
formed in Eqs. (6). The quantities tj have the following
eigenvalues:
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The parameters va are determined by Eq. (6). The eigen-
values of HN immediately follow from formula (10). To-
gether with the eigenfunctions they are given in Eqs. (4)
and (5).

Single grain.—We discuss how our results can
be applied to describe the physics of a single grain.
The isotropic limit q ! 0 of Eqs. (3) gives the BCS
Hamiltonian plus a tunable capacitive coupling A 1 g,
with K � g�ED , bi � 2g, uj � 2´j��EDQ�j´j 2

EFj 2 ED��, where EF is the Fermi level, and Q is the
Heaviside function [Q�x� � 1 if x , 0, Q�x� � 0 if
x . 0], setting sharp cutoffs at the Debye energy [21];
the diagonal elements Ujj and gjj can be independently
set to arbitrary values (since they would renormalize ´j).
Choosing A � 2g gives the “pure” BCS model. In this
limit, the eigenstates and eigenvalues Eqs. (5) and (4)
coincide with those of the BCS model and Eq. (6) reduces
to the RS equations [7].

We now discuss the case corresponding to q � 1:

K � g�ED , bi � 2g ,

A ¿ �g�ED� max
j,k

�´j 2 ´k�, uj � 2´j�ED . (20)

We can identify three regimes depending on the value of
ED : (i) ED , dE, gij is nearly zero, while Uij 	 A 2 g;
(ii) ED 
 dE, the pairing interaction decays on the scale
ED 
 dE, while Uij is slowly modulated by the energy
separation; (iii) ED . maxi,j�´i 2 ´j� both gij and Uij
are nearly uniform.

Application to many interacting grains.—We now dis-
cuss applications of the model (2) to interacting dots.
The Hamiltonian (2) can be reinterpreted as follows: the
set I � �1, . . . , V� can be split into the (disjoint) sets
Ia, a � 1, . . . ,N containing the levels of the ath grain:
I �

S
a Ia; V �

PN
a�1 Va, where Va � jIaj. Thus the

Hamiltonian HN is equivalent to the following one:
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where ia � 1, . . . , Va label the elements of Ia and ca,ias
annihilates an electron with spin s in the iath level of the
ath grain. For a fi b, g�a,b� describe tunneling of Cooper
pairs; in terms of (2), g

�a,b�
iajb � gij , where i is the iath

element of Ia, and j the jbth element of Ib; U�a,b� describe
a Coulomb-like coupling between grains a and b, and is
written in terms of Uij analogously to g�a,b�. Couplings
g�a,a� and U�a,a� describe pairing and Coulomb intragrain
interactions, respectively. We fix the couplings as in (20)
with the exception that

uj � Fa 2 ´j�ED , when j [ Ia . (22)

Now we impose

Fa11 2 Fa ¿ max
j,k[Ia

��´j 2 ´k��ED� (23)

to make the tunneling amplitude exponentially suppressed
with the spatial distance between the grains. The pairing
interaction is nearly uniform for levels within ED in the
same grain. The intragrain Coulomb interaction is also
nearly uniform Ujk 	 A, while the intergrain Coulomb
interaction is modulated by the corresponding energy
separation.
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Conclusions.—We found a class of integrable Hamilto-
nians, which are a generalization of the BCS Hamiltonian
characterized by nonuniform coupling constants. To our
knowledge, this is the first exact solution for nonuniform
pairing interaction. The strategy we have adopted con-
sists in generalizing the procedure of Ref. [10], namely
constructing the Hamiltonian of the system in terms of
anisotropic Gaudin Hamiltonians. By means of the inte-
grability and the exact solvability of the latter we obtain the
integrability and the exact solution of the model Eqs. (2)
and (3). In this sense, our procedure is close in spirit to
the quantum inverse scattering method [22]. The isotropic
limit q ! 0 of the Gaudin Hamiltonians corresponds to
uniform couplings. For arbitrary A, the Hamiltonian is
the sum of the BCS and the orthodox model. For A � g
the BCS Hamiltonian is obtained; the same isotropic limit
of the exact solution Eqs. (4)–(6) coincides with the RS
solution.

This class of models might be useful for applications to
the physics of metallic grains. The nonuniformity [23] of
the coupling constants (3) corresponds to include certain
O �dE2�ET � terms [15] in the Hamiltonian (1). In fact, we
recover the fluctuations of the Coulomb interaction of the
Ref. [15] identifying dUH � Uij 2 Uij0 . The integrable
model presented here might be applied as a starting point
for suitable perturbation schemes leading to the explana-
tion of the tunneling phenomena.

The present model can be applied to systems of few in-
teracting dots, since our capacitivelike intergrain interac-
tion does not decay with spatial distance.

In a recent paper (Ref. [24]) a nonuniform coupling for
bosonic systems was studied. The Hamiltonian was con-
structed from the bosonic analog of formulas (10) and
(11), where the Sa are generators of su�1, 1� [instead of
su�2�]. This algebraic difference does not affect the equa-
tions which wij , yij have to fulfill to ensure the commuta-
tivity of the (bosonic) tj . The coupling constants of this
bosonic model can be obtained in the isotropic limit of
our Eqs. (3) with uj ~ ´

d
j and A � 0. This shows that the

bosonic Hamiltonian in Ref. [24] can be obtained by the
limit q ! 0 of anisotropic su�1, 1� Gaudin models. Work
is in progress along this direction.
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