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Ground-State Phase Diagram of 2D Electrons in a High Landau Level:
A Density-Matrix Renormalization Group Study
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The ground-state phase diagram of 2D electrons in a high Landau level (index N � 2) is studied by
the density-matrix renormalization group method. Pair correlation functions are systematically calculated
for various filling factors from n � 1�8 to 1�2. It is shown that the ground-state phase diagram consists
of three different charge density wave states called stripe phase, bubble phase, and Wigner crystal. The
boundary between the stripe and the bubble phases is determined to be ns-b

c � 0.38, and that for the
bubble phase and Wigner crystal is nb-W

c � 0.24. Each transition is of first order.
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The electrons in two-dimensional systems are confined
to the lowest Landau level under a high perpendicular mag-
netic field. In this limit, Laughlin proposed the ground
state many body wave function at filling factors n � 1�q
(q is an odd integer) written by the Jastrow-type wave
functions [1], which are exact zero-energy eigenstates of
short-ranged repulsive interactions. This Laughlin state is
an incompressible liquid with an excitation gap, and the ex-
perimental results of fractional quantization are explained.

In weak magnetic fields electrons occupy higher Lan-
dau levels. Since the filled Landau levels are inert, it will
be a good approximation to consider only the partially oc-
cupied Landau level. Then naively we may think that the
electrons in the partially filled level behave similarly to
those in the partially filled lowest Landau level. However,
this is not correct. The wave function in the higher Landau
levels extends over a space with oscillations, and the inter-
action between them is more long ranged. Therefore, the
Laughlin state, which is the ground state for short-range
interaction, ceases to be the good candidate for the ground
state in the higher Landau levels, and the fractional quan-
tum Hall state becomes unstable.

For high Landau levels with its index N . 1, Koulakov
et al. proposed that the electrons form charge density
waves (CDW’s) called stripes and bubbles [2–4]. The
evidence of the CDW’s has been experimentally observed
as anisotropic resistivity and reentrant integer quantum
Hall state on ultrahigh mobility samples [5–7]. The
formation of the CDW’s was recently supported by
the exact diagonalization studies, and the results of the
exact diagonalizations are in good agreement with the
Hartree-Fock (HF) theory [8,9].

In spite of such recent development of the theoreti-
cal studies, the detailed properties of the CDW’s and the
ground-state phase diagram for high Landau levels are still
in question because Koulakov et al. used HF approxima-
tions, which neglect the effect of quantum fluctuations, and
the exact diagonalization studies are restricted to some spe-
cial filling and size of systems due to the limitation of avail-
able memory space. Reliable, detailed study is imperative
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to understand the nature of the reentrant phase and to un-
derstand the way the anisotropy disappears as the filling
factor is changed away from half-filling.

In this paper we present the numerical results for large
size systems obtained by the density-matrix renormaliza-
tion group (DMRG) method [10] which is applied to the
2D electron systems in a high Landau level of N � 2. The
calculated pair correlation functions show that the ground
state phase diagram consists of three CDW states, the stripe
phase, bubble phase with only two-electron bubbles, and
Wigner crystal. The obtained phase diagram is similar
to that of the HF calculations except that there are no
bubbles with more than two electrons per bubble [11]. The
boundary between the stripe phase and the bubble phase
is shown to be ns-b

c � 0.38, and that for the bubble phase
and Wigner crystal is nb-W

c � 0.24. It is also clarified that
each transition is of first order.

To deal with large size systems, we use the DMRG
algorithm [10], which was originally developed for 1D
quantum systems. In this method we can calculate the
ground-state wave function and the energy with high ac-
curacy. The outline of the algorithm is summarized as
follows: We start from small finite systems, i.e., four-site
system, and divide the system into two blocks. Then add
new sites at the end of two blocks and expand the blocks
with restricting the number of basis states. The restriction
of the basis states is carried out by keeping only eigen-
states of large eigenvalues of the density matrix which is
calculated from the ground-state wave function. Thus the
numerical error due to the truncation of basis states is es-
timated from the eigenvalues of the density matrix which
are truncated off, and the accuracy of the wave function is
systematically improved by increasing the number of states
kept in the blocks. We repeat the expansion of the blocks,
and finally get the desired size of the system within a con-
trolled accuracy.

Since the above algorithm is designed for 1D systems,
we have to find appropriate mapping to a 1D model. In this
study we use the eigenstate of free electrons as the local
basis, and represent the wave function in the Landau gauge.
© 2001 The American Physical Society 5755
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Since each wave function in the Landau gauge is uniquely
identified by the x component of the center coordinates
Xj � 2p�2j�Ly (j : integer), we can map the present 2D
system onto a 1D lattice model.

The important difference between the present model and
the usual 1D quantum systems is that the present model
has additional conserved quantity, the center of mass of
electrons,

PNe
i�1 Xi . This is due to the conservation of y-

momentum
PNe

i�1 p
y
i in the original two-dimensional sys-

tem, where p
y
i is related with Xi as p

y
i � Xi��2 under

the Landau gauge. This conservation law causes some
technical problems in the infinite system algorithm of the
DMRG. To avoid this problem we have to keep additional
basis states which are not included in the density matrix
of the ground state. However, after we switch to the finite
system algorithm, we need not care about such problems.

The Hamiltonian for electrons in Landau levels con-
tains only the Coulomb interactions. After the projection
onto the N th Landau level, the Coulomb interaction is
written as

H �
X
i,j

X
q

e2q2�2�LN �q2�2��2V �q�eiq?�Ri2Rj�, (1)

where Ri is the guiding center coordinate of the ith elec-
tron, which satisfies the commutation relation, �Rx

j , R
y
k � �

i�2djk, LN �x� are the Laguerre polynomials, and V �q� �
2pe2�q is the Fourier transform of the Coulomb interac-
tion. The magnetic length � is set to be 1. We consider the
uniform positive background charge to cancel the compo-
nent at q � 0 in Eq. (1), and neglect the electrons in fully
occupied lower Landau levels. In the following we calcu-
late the ground-state wave function of the Hamiltonian for
the high Landau level of N � 2 using both the infinite sys-
tem and finite system algorithms of the DMRG. We study
various sizes of systems with up to 18 electrons in the unit
cell of Lx 3 Ly with periodic boundary conditions in both
x and y directions. The truncation error in the DMRG cal-
culation is typically 1025 for 18 electrons with 200 states
in each blocks. The existing results of exact diagonaliza-
tions are completely reproduced within the truncation er-
ror. Since the present Hamiltonian has the particle-hole
symmetry, we consider only the case of n # 1�2 [12].

In Fig. 1 we show the ground-state pair correlation func-
tions g�r� in guiding center coordinates,

g�r� �
LxLy

Ne�Ne 2 1�

ø
C

Ç X
ifij

d�r 1 Ri 2 Rj�
Ç

C

¿
,

(2)

where jC� is the ground state and Ne is the number of the
electrons in the unit cell. This is essentially the correlation
function of the center of the cyclotron motion. We find
clear discontinuity in the shape of the correlation func-
tion between n � 2�5 and 4�11, and between n � 1�4
and 2�9. Since we have set the x and y axes to give con-
tinuous change as much as possible, the discontinuity in
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FIG. 1. Ground-state pair correlation functions in the guiding
center coordinates for electrons in the high Landau level of
N � 2. The magnetic length � is set to be unity. The number of
electrons in the unit cell is 18 for n � 1�2 and 8 for n � 1�7.
The aspect ratio Lx�Ly is chosen to obtain maximum energy
gain around Lx�Ly � 1.

Fig. 1 means drastic change in the pattern of the correlation
function. Thus the transition is first order. As shown be-
low, the pattern of the correlation function is characterized
by stripes between n � 1�2 and 2�5, bubbles between
n � 4�11 and 1�4, and Wigner crystal below n � 2�9.
Hence, we obtain the phase diagram shown in Fig. 2(a).
In the following we show the detailed structure of the cor-
relation functions in each phase.

We start from the stripe phase which appears around the
half filling. In Fig. 3 we show the pair correlation func-
tions at n � 3�7 in the guiding center coordinates. In this
figure, we clearly observe the stripe structure. The similar
stripe structure is obtained in the HF calculations, but we
find no clear modulation that is predicted in the HF the-
ory [13]. The clear stripe structure similar to the present
result is obtained also for n � 1�2, 6�13, 5�11, 4�9, and
2�5 with a different number of electrons and size of sys-
tems as expected from Fig. 1.

The detailed structure of the stripes such as the mean
separation depends on the aspect ratio Lx�Ly . To deter-
mine the optimal stripe structure, we next compare the
ground-state energy. In Fig. 3(d) we show the ground-state
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FIG. 2. Ground-state phase diagram of 2D electrons in high
Landau level of N � 2 obtained by (a) the DMRG and (b) the
Hartree-Fock theory [11].

energy for various aspect ratios. In this figure we find a
minimum at Lx�Ly � 1.3. At this ratio the mean sepa-
ration of the stripes is 6.2, which is close to the results
6.0 obtained by the HF theory. With increasing Lx�Ly ,
both the mean separation and the ground-state energy in-
creases. At Lx�Ly � 1.6, the orientation and the number
of the stripes in the unit cell are changed due to the level
crossing of the ground state. Then both the mean separa-
tion and ground-state energy decrease. The energy takes

FIG. 3. Ground-state pair correlation functions in the guiding
center coordinates and the energy at n � 3�7. The number
of electrons is 18. (a) Pair correlation functions for Lx�Ly �
1.3, (b) Lx�Ly � 1.8, (c) Lx�Ly � 2.3. (d) The ground-state
energy in units of e2�e�.
the minimum again around Lx�Ly � 1.9, where the mean
separation is 5.9. Further increasing Lx�Ly , level crossing
occurs again and the number of stripes increases to four
in the unit cell. Then the ground-state energy takes the
minimum at Lx�Ly � 2.3, where the mean separation is
6.2. Thus the optimal structure where the energy takes the
minimum does not depend so much on Lx�Ly . Since the
interval between the minima that appears on the Lx�Ly

axis becomes shorter with increasing the size of the unit
cell, the optimal structure at the energy minimum will be
realized in the bulk limit for any Lx�Ly .

Now we switch to the bubble phase. The correlation
function in the guiding center coordinates at n � 8�27
for 16 electrons is shown in Fig. 4(a). The aspect ratio
is chosen to be 1.9 where the minimum energy is ob-
tained. In this figure we find 8 bubbles in the unit cell
on the triangular lattice. Since the number of electrons is
16 in the unit cell, two electrons are clustering together
in the guiding center coordinates. This pairing of the two
electrons makes a ring structure in the correlation func-
tions around the origin. As expected from Fig. 1, the
same pattern of the two-electron bubbles is obtained also
for n � 4�11, 1�3, 4�13, 3�10, 2�7, 4�15, and 1�4, and
the lattice spacing increases with decreasing n. The simi-
lar two-electron bubbles are obtained in the HF calcula-
tions. However, as shown in Fig. 2(b), the HF theory
predicts also the three-electron bubbles, each of which con-
tains three electrons. Since we cannot find three-electron
bubbles in the present study, we think the energy gain
due to the quantum fluctuations is relatively small for
three-electron bubbles.

In the usual electron coordinates the pair correlation
functions are almost circularly symmetric around the origin
as shown in Figs. 5(a) and 6. This symmetric correlation
contrasts to the anisotropic correlation in the stripe phase.
In Fig. 6, we also plot the result at n � 2�9 where the
ground state is the Wigner crystal. We find that the results

FIG. 4. Pair correlation functions in the guiding center coor-
dinates at (a) n � 8�27 with 16 electrons, (b) n � 2�9 with
12 electrons.
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FIG. 5. Pair correlation functions in the electron coordinates.
(a) n � 8�27, 16 electrons. (b) n � 2�9, 12 electrons.

of n � 8�27 show the enhancement over the case of n �
2�9 around r � 2.5. This is caused by the clustering of
the electrons in the bubble phase. Similar to the guiding
center correlation, this enhancement makes a ring structure
around the origin as shown in Fig. 5(a).

Finally, we consider the ground state at low density
n & 2�9. In the limit of n ! 0 the electrons are sepa-
rated from each other. When the distance to the other elec-
trons exceeds the typical length of the single electron wave
function, we expect the difference of the Landau levels be-
comes almost negligible. Thus we expect the formation of
Wigner crystal as in the lowest Landau level. The result
for n � 2�9 with 12 electrons shown in Fig. 4(b) actually
shows that the center of the cyclotron motion forms a tri-
angular lattice with 12 lattice points in the unit cell. This
shows the tendency to form Wigner crystal. Thus we ex-
pect the ground state is the Wigner crystal for n & 2�9.
Even in the electron coordinates shown in Figs. 5(b) and 6,
the correlation function has peaks at the triangular lattice
points and the hexagonal symmetry is clearly seen. We
expect clear crystallization for smaller n.

Thus we have obtained a reliable phase diagram for a
system in the third lowest Landau level (N � 2) in the
strong magnetic field. Since we have neglected the spread
of the wave function in the third dimension, and screening
effect by electrons in the lower Landau levels, the phase
boundary may have a slightly different value in the actual
system. The absence of the three-electron bubble phase is
consistent with the experiment. This phase is predicted by
the HF theory [11], and has not been denied by the exact
diagonalization study [9]. From the phase diagram we
can speculate that the reentrant phase is the two-electron
bubble phase. The coexistence of the Wigner crystal and
the bubbles at the phase boundary around n � 1�4 brings
finite dissipation into the system separating the two integer
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FIG. 6. Pair correlation functions in the electron coordinates
for n � 8�27 with 16 electrons, and n � 2�9 with 12 electrons.

quantum Hall states. This idea would be jeopardized if the
three-electron bubble were realized, since then there would
be another reentrant phase.

Part of the numerical calculation is performed in the
ISSP, University of Tokyo. D. Y. thanks Aspen Center for
Physics, where part of the work was done. The present
work is supported by Grants-in-Aid No. 12640308 and
No. 11740184 from MEXT, Japan.
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