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Polytetrahedral Clusters
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By studying the structures of clusters bound by a model potential that favors polytetrahedral order, we
find a previously unknown series of “magic numbers” (i.e., sizes of special stability) whose polytetrahe-
dral structures are characterized by disclination networks that are analogous to hydrocarbons.
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Polytetrahedral order [1,2] has become an increasingly
important concept in condensed-matter physics. Such
polytetrahedral structures, for which the whole of space
can be naturally divided up into tetrahedra with atoms at
their vertices, are the basis of crystalline Frank-Kasper
phases [3,4], and have been invoked in order to understand
the structure of quasicrystals [5–7] and atomic liquids
and glasses [1,8,9]. However, little is known about the
consequences of polytetrahedral order for the structure of
clusters and nanoparticles. This situation contrasts with
close-packing schemes, which give rise to fascinating
cluster structures, such as Mackay icosahedra [10], Marks
decahedra [11], and Leary tetrahedra [12].

However, recent experiments indicate that small cobalt
clusters can have polytetrahedral order [13], although only
limited information about their detailed structure could
be obtained. Furthermore, there is an increasing inter-
est in mixed metal clusters [14,15], and polytetrahedral
structures would be expected for those alloys that exhibit
Frank-Kasper or quasicrystalline phases in bulk.

The distinctive features of polytetrahedral packings stem
from the inability of regular tetrahedra to fill all space.
When five regular tetrahedra are packed around a common
edge there is a small angular deficit of 7.4±, whose closure
requires a small distortion of the tetrahedra. If this method
of packing is extended to larger collections of tetrahedra,
local icosahedral coordination results, but the strain that
needs to be introduced to close all the gaps grows very
rapidly. Therefore, in order to form an extended polytetra-
hedral structure, sites where six tetrahedra share a common
edge need to be introduced — a negative disclination line
is said to run along this common edge. Even though the
local distortion required to remove the overlap that occurs
when packing six regular tetrahedra is larger, the overall
strain is reduced.

Polytetrahedral packings can therefore be described by
a network of disclination lines threading an icosahedrally
coordinated medium. In Frank-Kasper crystals this discli-
nation network is ordered and periodic, whereas it has been
suggested that atomic liquids and glasses are characterized
by disordered entangled disclination networks [1,8].

Many very small clusters naturally form polytetrahedral
clusters. The 13-atom icosahedron (20 slightly distorted
tetrahedra sharing a vertex) is an extremely common struc-
0031-9007�01�86(25)�5719(4)$15.00
ture for rare gases [16], as well as metal [17] and molecular
[18] clusters, and is generally favored over a close-packed
structure because of its lower surface energy. However,
structures that continue this polytetrahedral packing soon
become disfavored for most materials because the associ-
ated strain cannot be accommodated. The largest polyte-
trahedral clusters have been obtained for a model system
where the width of the potential allows the system to toler-
ate ordered polytetrahedral structures up to N � 70 [19].

A model system that exhibits polytetrahedral clusters
and enables us to make structural predictions about such
clusters would therefore be of great interest. Here we seek
to address this issue by studying clusters interacting with
a potential of the Dzugutov form [20]:
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where Q�x�, the Heaviside step function, is 0 for x , 0
and 1 otherwise. The total potential energy of a cluster is
then E �

P
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atoms i and j. This potential was designed to encourage
polytetrahedral and local icosahedral order in supercooled
liquids through the introduction of a local maximum in
the potential near

p
2 times the equilibrium pair distance

(Fig. 1) that disfavors close-packed structures [21]. This
maximum also resembles the first of the Friedel oscilla-
tions that can occur for metal potentials. The potential
provides a good model for metallic glasses [21,22], and
interestingly, under certain conditions a dodecagonal qua-
sicrystal can be generated [23].

For the original parametrization of the Dzugutov po-
tential, clusters form noncompact polytetrahedral struc-
tures composed of needles, rings, and three-dimensional
networks of interpenetrating and face-sharing icosahedra
[24]. Thus the original potential cannot provide a realis-
tic model of the compact polytetrahedral clusters formed
for cobalt or that might occur for metallic alloys. Non-
compact structures occur because the relatively narrow
potential well (Fig. 1) does not allow the system to ac-
commodate the strain associated with compact polytetra-
hedral clusters. Therefore, we chose a new parametrization
of the Dzugutov potential that both increases the width of
© 2001 The American Physical Society 5719
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FIG. 1. Comparison of the Dzugutov potential in its original
(Dz) and modified (m-Dz) form.

the minimum (mainly through softening the repulsive core)
and reduces the width of the potential maximum. As en-
visaged, this new potential gives rise to compact polytetra-
hedral clusters. The parameters in our modified potential
have the values

A � 3.00 B � 2.109 a � 1.65 b � 1.94

c � 0.52 d � 0.55 m � 4 .
(2)

The pair potential has a maximum at rmax � 1.36req of
height 0.83e, where req and e are the equilibrium pair
separation and well depth, respectively.

To find the global minima of clusters interacting with
this potential we used the basin-hopping algorithm [25,26].
For each size up to N � 100 we performed five runs of
100 000 steps starting from a random configuration. We
also performed short runs starting from configurations gen-
erated by adding or removing the appropriate number of
atoms from some of the lowest-energy minima for sizes
one, two, or three atoms above or below the current size.
These latter seeded runs were repeated until no new pu-
tative global minima were found and were particularly
important because the roughness of the energy landscape
[24] makes optimization from a random starting point par-
ticularly difficult. Indeed, above N � 100 no runs from
5720
a random starting point found the global minima, so in
this size range we used a different approach. Using the
structural principles obtained from the particularly stable
structures for clusters with less than 100 atoms, we were
able to construct a series of candidate geometries for par-
ticularly stable sizes in the range N � 100 250. These
structures then served as the initial seed configurations for
a series of short basin-hopping runs for the intervening
sizes. Again seeded runs using the lowest-energy minima
of nearby sizes were repeated until no further improve-
ments were obtained for any size.

The energies of the resulting putative global minima are
depicted in Fig. 2 in a manner that emphasizes particu-
larly stable minima or “magic numbers.” At small sizes
the magic numbers �N � 13, 19, 23, 26, 29� are those ex-
pected for polytetrahedral growth upon the 13-atom icosa-
hedron and are similar to those seen for Lennard-Jones
clusters [27] and their experimental analog, argon clusters
[28]. The next magic number corresponds to the disklike
38-atom cluster that was previously found for clusters in-
teracting with the original Dzugutov potential; this struc-
ture has a single disclination line running along its axis
and is a fragment of the Z phase, one of the Frank-Kasper
phases [24]. Then, for the rest of the size range we con-
sider, there is a series of roughly equally spaced min-
ima in Fig. 2 that correspond to a new sequence of magic
numbers.

Some of the structures of these new clusters are depicted
in the right-hand column of Fig. 3. Each cluster consists
of a disclinated central structure that is surrounded by an
overlayer in which an atom is added to each face and above
each vertex that is not at the end of a disclination line.
This is the same overlayer as for the initial polytetrahedral
growth on the 13-atom icosahedron, and in that context
has been called the anti-Mackay [19] or face-capping [27]
overlayer. This overlayer does not extend the disclinations
of the central cluster, thus giving rise to characteristic six-
fold pits where the disclinations exit onto the surface of
the resultant cluster (Fig. 3).

At the center of the 57-atom cluster is a 17-atom struc-
ture in which the central atom is the node for four discli-
nations in a tetrahedral arrangement. This coordination
shell (often denoted as Z16) is commonly found in the
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FIG. 2. Energies of the lowest-energy minima as a function of size relative to Eave, where Eave is a four parameter fit to these
energies. Eave � 23.040N 1 2.023N2�3 1 1.949N1�3 1 0.545.
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FIG. 3. Structures of some of the magic number clusters. On
the right is the complete structure, in the middle the correspond-
ing disclination network, and on the left the structure that is at
the center of the cluster. All three have the same orientation.

Frank-Kasper phases [4]. Furthermore, the atoms of all
the central clusters either have this or an icosahedral co-
ordination shell, thus giving rise to a tetrahedrally coor-
dinated disclination network (Fig. 4). There are two bulk
Frank-Kasper phases that involve such networks, the C14
and C15 phases. In the C15 phase the disclination network
has the structure of the diamond lattice and in the C14
phase the wurtzite structure. All the cluster centers can
be considered to be fragments of these two Frank-Kasper
phases, except the center of the 221-atom cluster which
involves a mixture of the two phases.

The easiest way to understand the progression of
structures is to note the correspondence between the
disclination networks and hydrocarbon structures (Fig. 4).
The disclination network of the 57-atom cluster is analo-
gous to methane. Next comes a series corresponding
to the linear alkanes, ethane (76), propane (94), and
n-butane (112), and the branched alkane, isobutane (111).
At this point it becomes favorable to form more compact
structures analogous to cycloalkanes, e.g., the chair form
of cyclohexane (129) and methyl-cyclohexane (146).
Above this size structures analogous to cage hydrocarbons
[29] are favorable, such as bicyclo�2.2.2�octane (148),
adamantane (166), iceane (184), diamantane (203), and
triamantane (239). It is noticeable that the most stable of
these latter magic numbers correspond to the polyman-
tanes (or diamondoids), where the central structures are
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FIG. 4. Schematic representations of the disclination networks
for the particularly stable clusters. The terminal disclination
lines have been omitted for clarity. The networks, thus
drawn, are analogous to the carbon backbones of a series of
hydrocarbons.

fragments of the C15 phase. C14 and mixed disclination
networks are competitive only in between these sizes
when they are competing with structures analogous to
methyl-polymantanes.

The analogy to the hydrocarbons also allows ready pre-
diction of the structure of larger clusters. For example,
it is well known that the next polymantane, tetraman-
tane has three isomers [29]. However, as for the origi-
nal parametrization of the Dzugutov potential [30], the
body-centered-cubic (bcc) lattice is lowest in energy for
bulk. A comparison of Eave to a similar function fitted to a
series of bcc rhombic dodecahedra indicates that bcc clus-
ters are lowest in energy beyond N � 1400.

Experiments can usually probe only cluster structure
indirectly and so comparisons with calculations from can-
didate geometries are required for structural identifica-
tion. Therefore, to enable the potential identification of the
structures described here, all are accessible from the Cam-
bridge Cluster Database [31]. Furthermore, as the series
of magic numbers does not coincide with any previously
known [17], there is also the potential for identification
through mass spectral abundances. One should note that if
for the experimental material it is favorable to cap the six-
fold pits on the cluster surface the magic numbers would
then occur at N � 61, 82, 102, 121, 141, 161, 182, 202,
223, 243, and 261.

Calculations for an example cluster, the 166-atom
adamantane analog, are consistent with the experimental
results for cobalt clusters [13]. The calculated scattering
function reproduces many of the features observed in the
x-ray data, and the structure has perpendicular planes of
atoms that can account for the square arrays of lattice
fringes seen in the electron microscopy images. However,
this agreement may result more from the polytetrahedral
order than the actual detailed structure of our clusters [13].
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It is remarkable that many of the unusual cluster
structures that have been predicted by theory have been
subsequently observed experimentally. For example, the
Mackay icosahedron [10], first suggested in 1962, has
since been seen for a wide variety of systems over a
large size range [17,32]. Furthermore, the small truncated
octahedron at N � 38 and Marks decahedron at N � 75,
whose stability was first identified in calculations on
model clusters [33], have since been identified for Ni38
[34], Au38 [35], and Au75 [36]. Most recently the Leary
tetrahedron, a surprise global minimum for a 98-atom
Lennard-Jones cluster [12], has since been found for
�C60�98 [37]. Therefore, it would be no surprise if the
polytetrahedral structures that we have described here
were likewise to be positively identified experimentally.
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