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We perform an elastostatic analysis of a periodic array of cracks under constant loading. We give
an analytical solution and show that there is a limitation to the fracture spacing, due to a transition
from an opening to a compressive loading. For this configuration, the threshold of the fracture spacing
depends on neither the applied strain nor the elastic parameters of the material. This result shows that,
in the general case of layered materials, the physical mechanism that is responsible for the limitation
in the density of fractures is related mainly to the geometry of the problem. This is in agreement with

observations and with recent numerical results.
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Parallel open mode brittle fractures, or joints, in layers
are common structures in Nature (see Fig. 1). They are
currently observed in the Earth’s crust such as in sedimen-
tary rocks [1]. They are also present in laminated engi-
neering materials [2]. In most cases, it is observed that
the ratio s of the crack spacing to the layer thickness can-
not decrease below a certain threshold value [3], although
the physical intuition suggests that the spacing should de-
crease with increasing applied loading. Indeed, since the
joints are stopped by the neighboring layers, fracturing new
joints would be the only way to dissipate the stored energy.
Therefore, as the tension increases, it seems that there is
no limitation to the density of cracks.

A recent finite element analysis has shown that there is
a limitation to the density of fractures [4]. This thresh-
old was explained by the change from an opening to a
compressive mode at the middle of the spacing (at half the
wavelength). So a new fracture cannot occur. This analysis
is in agreement with other simulations and experiments on
the permeability of joints in the geophysics literature [5].
However, these numerical treatments do not allow one to
set the control parameters which fix the spacing bound. In
the following, we propose an exact treatment of this crack
problem in a model situation, where the different layers
have the same elastic properties, which is also the case
considered in the numerical simulations of [4]. We show
the existence of the instability from tension to compres-
sion as the spacing decreases. Moreover, in our model the
spacing threshold is of order 1, and does not depend on
either the applied loading or the elastic parameters of the
material layers. It turns out that this elastic instability is
a generic feature which is related mainly to the geometry
of the problem. This result suggests that for layered mate-
rials with different elastic properties, the physical mecha-
nism that is responsible for the limitation to the density
of fractures is purely geometrical. However, the spacing
threshold in the general case will depend on the elastic
mismatch parameters between the layers.
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In our approach, we consider a material sample with an
infinite array of parallel fractures equally separated by a
distance A. We choose half the wavelength as the length
unit. The crack spacing s is then given by 1/a, where 2a is
the length of the cracks in dimensionless units (see Fig. 2).
Fixing the ends of the fractures is a way to mimic the effect
of the neighboring layers, since the observed cracks do
not cross the neighboring interfaces. We assume that the
sample is loaded in the y direction by an average strain
€. which represents the tension supported by the layer.
We perform a classical elastostatic analysis and show that
the fracture spacing threshold does not depend on either
the applied strain or the elastic parameters of the material,
which are the Young modulus £ and the Poisson ratio ».

Under plane stress conditions, the two-dimensional
strain tensor € is related to the stress tensor & by

2
1 — »2

gij = [(1 — V)E,‘j + VEkk(Sij]. (D)
The plane strain configuration is recovered by a suitable
change of the Poisson ratio. For convenience, all the
quantities in Eq. (1) are dimensionless: & is scaled by
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FIG. 1. Schematic representation of a layered system with a
periodic array of cracks generated in the less compliant material.
The dotted region represents the unit cell that will be studied.
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FIG. 2. Schematic representation of the elastostatic problem.

Eex/(1 — v?) and € is scaled by 2€-/(1 — »?). The
body is loaded by means of a uniform remote tension of
magnitude o, = 1. Since the cracks’ faces are traction-
free, it is convenient to superimpose this solution with the
one where the cracks are subject to compressive stresses
of the same magnitude. Moreover, due to the periodicity
of the configuration, it is enough to solve the problem for
the stress field in the region 0 = y = 1.

The equilibrium equations in the absence of body force
are given by

2y,
i _

axiaxj

(1 —v)Au; + (1 + v) 2)

s

where i is the displacement field. The boundary conditions
for this problem are simply given by

oyw(lx] <a,0)= —1. (6)
The conditions on the displacement and stress fields in
Eq. (3) are imposed by the periodicity of the configuration,
while Egs. (4) and (5) are imposed by the symmetry of
the opening mode loading. Finally, Eq. (6) comes from
the fact that the total solution of the present problem has
to satisfy traction-free boundary conditions on the cracks’
faces. At this stage, the problem depends only on the
Poisson ratio v and on the dimensionless crack length a.

The strip geometry and the boundary conditions suggest
the use of Fourier sine and cosine transforms [6]. Because
of the symmetry of the problem one can write the displace-
ment field in the form

2 o0

uy(x,y) = 1/;]0 f(k,y)sinkx dk ,
2 o0

uy(x,y) = 1/;/0 g(k,y) coskx dk .

Also, we define the Fourier transform of oy, (x,y) by

oyy(x,y) = \/%fox s(k,y)coskx dk . 9)

The equations satisfied by the functions f(k, y) and g(k, y)
are readily derived from Eq. (2)

(7

®)

a'xy(x, 1) = uy(x’ 1) = 0’ (3) (1 _ V)f” _ 2k2f _ (1 + V)kgl — O, (10)
Ty (x,0) = 0, “) 26" — (1 — kg + (1 + wkf' =0, (1)
uy (x| > a,0) =0, (5)  where the derivatives are with respect to y. After some
| algebraic manipulations, one finds that

fk,y) 1+V{|: 1—vw k i| [1—1/ i| }
= ky — thk + ——- hky + | —— — kycothk hky, 12
2(k,0) 2 YT, sinh2k | O T T, Ty cothe sy (12)

gk,y) 1+vw ”: 2 i| |: 2 k } . }
= + ky cothk hky — | ky + thk + ——- hky. 13
¢(k,0) 2 LT T YCOmEeoSiRy Ry T o sinh2k | Y (13)

Written under this form, one can verify that the functions f(k, y) and g(k, y) satisfy the bulk equations (10) and (11) and

the boundary conditions (3) and (4). We also obtain, using
s(k,y) _

Eq. (1),

2k.0) _ZSinhzk[ky coshk(2 — y) + k(2 — y)coshky + sinhk(2 — y) + sinhky]. (14)
Note that s(k,y), and thus o,(x,y), does not depend on |
the Poisson ratio. So it is completely independent of the k
material properties. In the following, the two main func- F(k) = m[k + ¢ " sinhk], (17
tions that will be manipulated are s(k,0) and s(k, 1). They
are easily calculated from Eq. (14): k
Y a- (9 Gk) = < [kcoshk + sinhk]. (18)
s(k.0) = —[k + F(k)]g(k.0). (15) ) | |
Note that oy, (x, 1) is the key quantity of this problem,
sk, 1) = —G(K)g(k,0), (16) since the sign of [1 + oy, (x, 1)] indicates if the middle of

where
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the spacing between two fractures is under tension or com-
pression. If it is under tension, one can expect nucleation
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of a new fracture, which will be responsible for defining
a new wavelength (half the previous one). However, if it
is under compression, the breaking process stops and the
elastic energy must be dissipated according to a different
scenario. It is generally believed that this elastic energy
is used for the opening of the preexisting cracks and in-
duces a full compression of the horizontal layer in the y
direction [5].

In order to solve the problem completely, the determi-
nation of the function g(k,0) is needed. This is done by
using the boundary conditions (5) and (6), which can be
expressed as

2 [ee]
1/—[ g(k,0) coskx dk = 0, x| > a, (19)
T Jo
d(1) ¢

d X
— dt +
dxfo x2 — 2 0

This equation can be simplified by using Abel inversion
transforms [6]. One obtains a Freedholm integral equation
for ®(z), given by

q)(t)=t—t[aH(t,u)CD(u)du, 0<t<a,
0
(23)
where
H(t,u) = f F(k)Jo(kt)Jo(ku) dk . (24)
0

Despite many attempts, we did not succeed in finding an
analytical solution for Eq. (23). However, the numerical
resolution of this integral equation is straighforward.
Once the integral equation is solved for each value of
a, one can determine the displacement and stress fields at
any location. As an example, one can calculate the stress
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FIG. 3. The dimensionless stress intensity factor K; as a func-
tion of the crack length a.

dt @(t)f dk F(k)Jo(kt) coskx = 1,
0

,/%[x[k + F(k)]g(k.0)coskx dk = 1, |x] < a.
0
(20)

This is a set of dual integral linear equations whose analyt-
ical solutions are not available. A compilation of known
solutions of such equations can be found in [7]. The con-
dition (19) is automatically satisfied if the function g(k, 0)
is given by

gk, 0) = \/?foa O (1) Jo(kt) dt, 21

where Jj is the Bessel function, and ®(¢) is a yet un-
known function. Replacing g(k,0) as given by Eq. (21)

| in Eq. (20) leads to an integral equation for ®:

x| < a. 22)

intensity factor, which is a quantity of interest in the field of
fracture mechanics. In this case, the dimensionless stress
intensity factor K; is given by [6]

Ki(a) = \/?q)(a). (25)

Figure 3 shows the variation of the stress intensity factor
as a function of the crack length a.

The quantity of interest in the present problem is
0yy(0,1), the stress at the middle spacing between two
successive cracks. It is simply given by

oy (0,1) = — fo o) fo dk G(k)Jo(kt).  (26)

The sign of 1 + ¢,(0,1) determines whether there is a
tensile or a compressive loading. It is clear that fora = 0,
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FIG. 4. The magnitude of the total stress at the point x = 0
and y = 1 as a function of the crack length a.
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oyy,(0,1) = 0 [see Eq. (26)], and for a > 1, the sample is
completely broken, so one must have 1 + ¢,,(0,1) — 0.
This behavior is in agreement with Fig. 4, which represents
the total stress at the middle of the spacing as a function
of the crack length a. Figure 4 also shows that at a = 1,
or equivalently s = 1, the stress changes effectively from
an opening to a compresssive mode, as has been found
numerically for a particular case [4]. The transition point
does not depend on any material parameter. This threshold
does not even depend on the Poisson ratio in our model.
This is an intrinisic instability which is due only to the
geometry of the loading.

This simple model which can be solved exactly shows
a well-known feature of fracture in layered materials. Our
numerical value for the spacing applies for identical layers.
The physical origin of the instability lies in the exchange
of the elastic energy from fracturing to opening of the
existing cracks. Note that introducing layers of different
elastic constants will not modify the generic feature of the
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instability. Evidently, the spacing threshold will depend on
the ratios of the elastic constants but the instability should
always occur, since its origin lies in the geometry of the
cracks’ patterns.

[1] N. Narr and J. Suppe, J. Struct. Geol. 13, 1037 (1991).

[2] A. Parvizi and J. E. Bailey, J. Mater. Sci. 13, 2131 (1978).

[3] H. Wu and D.D. Pollard, J. Struct. Geol. 17, 887 (1995).

[4] T. Bal, D.D. Pollard, and H. Gao, Nature (London) 403,
753 (2000).

[5] L.N. Germanovich and D. K. Astakhov, “Fracture Closure
in Extension and Stress Dependent Permeability” (to be
published).

[6] I.N. Sneddon and R.P. Srivastav, Int. J. Eng. Sci. 9, 479
(1971).

[7] B.N. Mandal and N. Mandal, Advances in Dual Integral
Equations (Chapman and Hall, London, 1999).



