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Angular Distributions for Double Ionization of Li2 by an Ultrashort, Intense Laser Pulse
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We predict photoelectron angular distributions for double ionization of Li2 by both weak and intense
ultrashort, linearly polarized laser pulses by direct numerical integration of the three-dimensional, time-
dependent Schrödinger equation. Li2 is treated as a two-active electron system. Near threshold, for low
intensity we recover general features of angular distributions for one-photon double ionization. For the
intense field (multiphoton) case, the photoelectron angular distribution changes significantly, particularly
in directions parallel and perpendicular to the laser polarization axis.
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Double photoionization remains a challenge in atomic
physics due to the difficulty of describing the correlated
motion of two interacting continuum electrons in the field
of an ion core. The simplest case of single-photon double
ionization is still the object of much research [1]. Most
theories for this case evaluate triply differential cross sec-
tions (TDCS) in terms of transition matrix elements cou-
pling initial and final states. While methods exist to obtain
the initial state to arbitrary accuracy, the search for ana-
lytic representations for the asymptotic final state wave
function continues [2]. Many ab initio approaches use
the stationary Schrödinger equation to construct the final
state numerically [1,3]. Direct numerical integration of
the three-dimensional, time-dependent Schrödinger equa-
tion (TDSE) is the only approach adequate for studying
the interaction of an atomic system with an ultrashort, in-
tense laser pulse. For two-electron systems, this remains
a challenging task. However, recent increases in both
computer speeds and data storage capacities has allowed
theorists to begin tackling this problem without gross ap-
proximations. Several approaches that account for the
pulse shape have been developed [4,5]. For double ioniza-
tion by intense fields, very little is known concerning the
distribution of ejected electrons, despite recent electron co-
incidence [6] and COLTRIMS [7] measurements. On the
theoretical side, although angle-averaged radial probability
density plots (averaged over all angles except u12) indicate
that the two electrons may be ejected with a small rela-
tive angle u12 by an ultrashort intense laser pulse [8], an
approach providing detailed and complete angular distri-
butions is still needed. For this purpose, one requires a
nonperturbative approach that includes correlation effects
not only in the initial state but also in the time-dependent
final state throughout the interaction time of the system
with the laser field. We describe such an approach that
involves the solution of the TDSE for a real two-active
electron system and present angular distributions follow-
ing one-photon and multiphoton double ionization of Li2.

For approaches that integrate the TDSE on a finite radial
grid, there is no precise definition for the double ioniza-
tion probability (DIP) because of the difficulty of desen-
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tangling single and double ionization contributions in the
time-propagated wave function. The DIP (including both
sequential and nonsequential) is usually defined as [9]
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where rj � �rj , uj , fj� and dVj � sinujdujdfj � j �
1, 2� denote, respectively, the coordinates and the differen-
tial solid angles for the two electrons. C�r1, r2, T � repre-
sents the antisymmetrized wave function at time T , the end
of the laser pulse. In Eq. (1), angular integrations are per-
formed over all angles (i.e., 0 # uj # p , 0 # fj # 2p),
while radial integrations involve only configurations where
the two electrons are both at distances larger than a cutoff
radius rc, which is chosen so that most of the ground state
probability distribution lies within 0 # r1, r2 # rc. The
DIP defined by (1) is inexact because the residual ground
and the doubly excited state populations may contribute to
the region rc # r1, r2 # `. These contributions may be
small but nevertheless not negligible compared to the DIP,
which is small as well. We also define the DIP by (1), but
with the difference that in C�r1, r2, T � we exclude contri-
butions from bound and doubly excited states. To obtain
the electron angular distributions for double ionization, we
omit integration over the solid angles in (1), so that

d2P
dV1dV2

�
Z

r1.rc

dr1

Z
r2.rc

dr2 jC�r1, r2, T �j2 (2)

represents a doubly differential double ionization proba-
bility (DDDIP) for electron 1 to emerge in the solid angle
dV1 and electron 2 within dV2. The DDDIP is a function
of the four angles u1, f1, u2, and f2; also, it is not dif-
ferential in energy and therefore accounts for all possible
energy transfers to the electrons from the laser field pulse
as well as for all possible energy sharings among the two
ejected electrons. As in [10], this approach avoids the need
to specify asymptotic boundary conditions. In this paper,
atomic units are used and angles are expressed in radians,
unless otherwise stated.
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In solving the TDSE we treat the Li2 ion as a two-active
electron system, with each electron moving in the field
of a potential V �r� describing the Li1 core [11,12]. This
potential accounts for the polarizability of the Li1 core
and contains semiempirical parameters which are fitted
to reproduce the experimentally measured energy levels
of Li. It has been used successfully in time-independent
photodetachment calculations for Li2 whose results agree
well with experiment in the perturbative regime [12,13].

The TDSE for the atomic system interacting with a
linearly polarized laser field is i

≠

≠t C�r1, r2, t� � �H0 1

D�t��C�r1, r2, t�. Here H0 � h�r1� 1 h�r2� 1
1

r12
is the

atomic Hamiltonian, which includes the correlation term,
and h�r� � 2D�2 1 V �r� is the one-electron Hamilto-
nian for the interaction of each active electron with the
Li1 core. D�t� � A�t� ? �p1 1 p2� is the (velocity form)
dipole operator for the interaction of the system with the
laser field, where A�t� � zA0f�t� sinvt is the vector po-
tential, v is the laser frequency, z is the polarization unit
vector, and f�t� is a squared cosine envelope.

We solve the TDSE in a box by expanding the wave
function C�t� in a basis as follows:
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where A is the antisymmetrization operator. The expan-
sion coefficients are denoted by c�1�2LM

n1n2
and the bipolar

spherical harmonics Y
L,M
l1,l2

couple the individual angular
momenta of the two electrons in LS-coupling. Because
the laser field is linearly polarized and the ground state of
Li2 has 1S symmetry, we may set M � 0 in (3). The
radial functions Rn,� are obtained by solving the one-
electron radial Schrödinger equation, �2 1

2
d2

dr2 1
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V �r��R�r� � ER�r�, in a box of size r � r0 with the
boundary conditions Rn,��r0� � 0. The wave function (3)
is subjected to similar boundary conditions: C�r1, r2 �
r0, t� � C�r1 � r0, r2, t� � 0. To minimize flux reflec-
tions at the boundaries of the box, its size, the laser in-
tensities, and the pulse duration are adjusted such that the
wave function remains negligible at rj � r0 � j � 1, 2�.

Diagonalizing H0 in the above basis yields a set of
discrete two-electron atomic eigenstates (comprising only
one bound state for Li2, as well as continuum and other
pseudo-states), which permit one to solve the TDSE in a
more convenient (atomic) eigenstate representation [4] in
which the wave function F�t� represents a linear combina-
tion of the atomic eigenstates with time-dependent coeffi-
cients. The resulting set of first-order differential equations
in time is solved using an embedded Runge-Kutta method
of order 5 [14]. From F�T � in the atomic eigenstate ba-
sis at the end of the pulse excitation, one obtains C�T �
by a matrix-vector product. In obtaining C�T � for com-
puting the DIP, we set to zero all components of F�T � cor-
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responding to atomic states below the double ionization
threshold (DIT), thereby eliminating spurious contribu-
tions to the DDDIP from the ground state, doubly excited
states, and singly ionized states below the DIT. C�T �
is thus a continuum wave function describing both dou-
bly and singly ionized continua having energies above the
DIT. The radial integration in the domain rc # r1, r2 # `

is then used to separate approximately the doubly ionized
continua from the remaining singly ionized continua.

We use eight total angular momenta (L � 0, 1, 2, 3, 4,
5, 6, and 7) and a box size r0 � 250 a.u. For each L, 2200
to 3700 configurations are used, leading to a total of about
21 000 ordinary differential equations to be solved. Such a
large expansion is necessary to obtain an adequate density
of states in the vicinity of the DIT. Typical run times for
time propagation are about 24 h on a 660 Mhz DEC EV6
work station. We have varied r0 from 180 to 300 a.u., as
well as the number of angular momenta, to check the sta-
bility of our results. The binding energy obtained for Li2

is Eg � 20.0225 a.u., which is in agreement with the ref-
erence value 20.02269 a.u. [15]. Ejecting the two active
electrons in Li2 requires an energy of about 0.2205 a.u.
(6 eV). We have verified that, for low intensities (up to
1010 W�cm2), the detachment yield [given by 1 2 P0,
where P0 is the projection of C�T � on the field-free bound
state] depends linearly on the laser peak intensity (on a
log-log scale), in agreement with lowest order perturbation
theory. A cutoff radius rc � 25 a.u. is used. (Note that the
ground state of Li2 extends to approximately 20 a.u.). We
varied rc between 20 and 25 a.u. and found a 9% maxi-
mum difference in the magnitude of the DDDIP, but the
angular distribution remains unchanged.

We first treat double ionization by a weak laser
pulse of peak intensity I � 109 W�cm2, frequency
v � 0.235 a.u., and 38 cycles within the full width at
half maximum (FWHM) in f�t� (corresponding to about
24 fs). The low intensity used makes the absorption
of a single photon predominant. The frequency chosen
is near the DIT (giving about 0.4 eV of excess energy
above threshold), where one expects correlation effects
to be strong. The number of cycles used is large enough
for the pulse to have a relatively narrow energy band-
width. Indeed, a plot of the probability amplitudes of
the wave function with respect to the atomic energies
shows a single, well-resolved peak above the DIT,
indicating absorption of a single photon. At the end
of laser excitation, both the population removed from
the ground state and the population above the DIT are
almost identically equal to 1.1 3 1025. This indicates
that one-photon absorption is the dominant process and
that most of the population remains in the ground state.
Three-dimensional plots of the DDDIP with respect to
the polar angles are given in Figs. 1(a) and 1(b) for
an emission of the two electrons with azimuthal angles
�f1 � 0, f2 � 0� and �f1 � 0, f2 � p�, respectively.
Analysis of both figures allows one to draw the following
inferences (which result from the Coulomb repulsion
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between the two electrons): (i) The emission of both
electrons in opposite directions is higher in magni-
tude than the emission in the same direction. (ii) The
DDDIP is negligible in the vicinity of u1 � u2 � 0 and
u1 � u2 � p in both figures as well as in the vicinity
of u1 � u2 in Fig. 1(a). This indicates that electrons are
predominantly emitted at large relative angles. The strong
signature of correlation effects in the single-photon double
ionization process is better illustrated in Fig. 2, where
we plot DDDIP patterns (extracted from Fig. 1) in polar
coordinates, for various emission angles u1 of electron
1. Note the node in the DDDIP pattern at angles u1 �
u2 � p�2 [see Fig. 2(c) and the valley in Fig. 1(b)],
indicating that there is no emission of both electrons in
the direction perpendicular to the polarization axis. This
agrees with a selection rule valid for any sharing of the
excess energy [16]. The fact that our DDDIP accounts for
all possible energy sharing configurations of the excess
energy is illustrated more clearly in Fig. 2(a). Indeed,
according to selection rules for the TDCS for equal
energy sharing [16], there should be a node at angles
�u1, u2� � �0, p� and �u1, u2� � �p, 0�, i.e., the lobe
along the polarization axis in Fig. 2(a) should be absent.
Here this lobe arises from contributions of unequal energy
sharing configurations. Except for this particular situa-

FIG. 1. Single-photon DDDIP for Li2 by a weak, linearly po-
larized laser pulse of peak intensity I � 109 W�cm2, frequency
v � 0.235 a.u., and FWHM of 24 fs: (a) for f1 � f2 � 0 and
(b) for f1 � 0 and f2 � p. Note that (a) and (b) are shown
from different angles.
tion, the angular distributions in Figs. 2(b)–2(d) consist
essentially of two lobes whose relative size is a function
of the angle between k1 and z. Similar features have been
obtained for He by both perturbative calculations [16] and
a “Wannier” analysis [17].

Consider now a laser pulse, of peak intensity 2 3

1011 W�cm2, frequency 0.038 a.u., and 3 cycles at
FWHM, corresponding to about 12 fs. At the end of the
pulse, more than 75% of the ground state is depleted,
indicating that, although the intensity is not too high,
we are in the fully nonperturbative regime for Li2.
For this frequency at least six photons are necessary to
reach the DIT. The DDDIP is presented in Figs. 3(a)
and 3(b) for electron emission with azimuthal angles
�f1 � 0, f2 � 0� and �f1 � 0, f2 � p�, respectively.
One observes very different angular distributions from
those for single-photon double ionization. The DDDIP
distribution has four prominent peaks, corresponding
to the four possible configurations for ejection of the
two electrons along the polarization axis: (i) both along
positive z, (ii) both along negative z, (iii) electron 1 along
positive z and electron 2 along negative z, and (iv) the
configuration (iii) with electrons 1 and 2 exchanged.
[Note that (iii) and (iv) are identical in magnitude.] That
the configurations (i) and (ii), which were not observed
at low intensity because of the Coulomb repulsion, are
now prominent illustrates the decreasing influence of the
Coulomb interaction vis-à-vis the laser-atom interaction at
high laser intensity. It is also a signature of nonsequential
double ionization. However, peaks corresponding to
configurations in which electrons are emitted in op-
posite directions along the polarization axis are more
intense. Contrary to the one-photon case, the differ-
ences in shape and magnitude between the DDDIP for
double ejection with azimuthal angles �f1, f2� � �0, 0�
and �0, p� are now less significant. Major differences
between the two configurations appear away from the
polarization axis, with a particularly enhanced difference

FIG. 2. Single-photon DDDIP patterns in polar coordinates for
four emission angles u1 (with directions given by the unit vector
k1) of electron 1: (a) u1 � 0, (b) u1 � p�3, (c) u1 � p�2,
and (d) u1 � 3p�4. Laser parameters are the same as shown in
Fig. 1.
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FIG. 3. Multiphoton DDDIP for Li2 for an intense laser
pulse of peak intensity 2 3 1011 W�cm2, v � 0.038 a.u.,
and FWHM of 12 fs: (a) for �f1 � 0, f2 � 0� and (b) for
�f1 � 0, f2 � p�.

at u1 � u2 � p�2. Indeed, due to the contributions of
higher order total angular momentum channels in the pro-
cess, the node observed in the one-photon case at u1 �
u2 � p�2 disappears. As shown in Fig. 3(b), one ob-
serves a strong local maximum at these angles for the
�f1, f2� � �0, p� case. In Fig. 3(a), one can barely ob-
serve a much smaller maximum for emission of both elec-
trons in the same direction at these angles.

In the one-photon case (Fig. 1), the DIP obtained with-
out removing contributions from states below the DIT is
only a few percent higher (in relative value) than the ac-
tual one, and the change in angular distributions is also
small, but perceptible for the emission at f1 � f2 � 0:
the node expected at u1 � u2 � p�2 is replaced by a local
maximum, i.e., a distinctive bump appears where Fig. 1(a)
shows a valley. However, in the multiphoton case (Fig. 3),
where intermediate photon resonances lie below the DIT,
the consequence of not removing spurious contributions is
dramatic: the DIP obtained in this case is more than 10
times higher than our results.

We have presented a nonperturbative approach for
obtaining angular distributions in the one-photon and
5690
multiphoton cases for double ionization by an ultrashort,
linearly polarized laser pulse, based on direct numerical
integration of the three-dimensional TDSE. Our results
show that the electron Coulomb repulsion and other
selection rules strongly affect the emission angles of the
two electrons in the one-photon double ionization process.
In the multiphoton case, electrons may possibly be ejected
in all directions, but with sharp peaks along the directions
parallel and perpendicular to the polarization axis of the
field. For the intensities studied, configurations where
electrons are ejected in opposite directions are more likely
than those for ejection in the same direction.
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