Calculations of Magnetic Moments for Three-Electron Atomic Systems

Zong-Chao Yan

Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

(Received 13 February 2001)

The first fully correlated calculations of the magnetic moment in lithium are presented. Relative to the free-electron value, the Zeeman g_J factor for the ground state lithium $g_J/g_e - 1$ is calculated to a computational accuracy of 200 parts in 10⁹, including relativistic and radiative corrections of orders α^2 , $\alpha^2 m/M$, and α^3 . The isotope shifts in g_J are predicted precisely for various isotopes. The extensions to the first excited S state of lithium and the ground state of Be⁺ are made.

DOI: 10.1103/PhysRevLett.86.5683

PACS numbers: 32.60.+i, 31.30.Gs, 31.30.Jv

The theoretical calculation of the magnetic moment for an electron is a fundamental problem in atomic physics. The g_J factor of a *bound* electron in an atom is the most sensitive testing ground for relativistic and radiative effects for the atom in external magnetic fields. Furthermore, for a system more complicated than hydrogen, the study of isotope shifts in g_J requires highly accurate atomic wave functions. In this Letter, we report the first significant theoretical progress for lithium since the early work of Hegstrom [1,2]. Definitive values of g_J and its isotope shifts will be established.

Based on the extended Breit equation which includes the anomalous magnetic moment interactions, Hegstrom [1] studied nuclear recoil and anomalous magnetic moment corrections to the Hamiltonian of an *n*-electron atomic system in external magnetic field and showed that the magnetic-field dependence of the radiative corrections of order α^3 atomic units vanishes for S states. The lowestorder radiative correction of order α^3 atomic units is due entirely to the anomalous magnetic moment of the free electron. Thus, the formalism of Hegstrom in the nonrelativistic limit is valid up to the order of α^3 atomic units. Hegstrom [2] then evaluated the g_1 factor of the ground state lithium and predicted an isotope shift in the ratio between ⁶Li and ⁷Li, within the Hartree-Fock framework. Veseth [3] also calculated the g_J factors for lithium and other elements using the spin-extended Hartree-Fock theory. Other theoretical methods include the many-body perturbation theory of Veseth [4], the relativistic coupled-cluster single- and double-excitation approximation of Lindroth and Ynnerman [5], and the four-component nonperturbative relativistic formalism of Marketos [6]. These theoretical results, however, vary over a considerable range. On the experimental side, the lithium ground state g_J value may be derived from three measurements of the ratios: $g_J(\text{Li})/g_J(\text{K}), g_J(\text{K})/g_J(\text{Rb})$, and $g_J(\text{Rb})/g_e$, where g_e is the free-electron value, as reviewed by Arimondo, Inguscio, and Violino [7]. Using a laser fluorescence technique, Wineland, Bollinger, and Itano [8] measured the g_J factor of the ground state Be⁺. For few-electron atomic systems, the only isotope shift in g_J that has been established both theoretically and experimentally is for hydrogen [9,10].

From a computational point of view, for few-electron systems, such as helium and lithium, the central problem for a well-converged evaluation of the g_J factor is the adequate inclusion of electron-electron correlations in the nonrelativistic wave functions. For helium, several calculations have been done in the past thirty years, including two recent ones using fully correlated Hylleraas coordinates [11,12]. For lithium, however, no such calculations have been reported in the literature. The present work is based on our recent advances [13–16] in high-precision variational calculations for the lithium atom, using multiple basis sets in Hylleraas coordinates.

The starting point for evaluating the Zeeman g_J factor for lithium in an *S* state is [2]

$$g_J = -\langle H_Z' \rangle / (\mu_B H_M J), \qquad (1)$$

where the matrix element is evaluated in the state J = 1/2and $M_J = 1/2$, H'_Z is the magnetic-field dependent part of the Hamiltonian, H_M is the external magnetic field, and μ_B is the Bohr magneton. Here a convention has been used [2], in which the g_J factor for the electron is negative. The Hamiltonian H'_Z for S states can be written in the form of (in atomic units throughout) [1]

$$H'_{Z} = -\mu_{B}g_{e}H_{M}\sum_{i}s_{iz} + \frac{1}{3}(1+g_{e})\alpha^{2}\mu_{B}H_{M}\sum_{i\neq j}\frac{\mathbf{r}_{i}\cdot\mathbf{r}_{ij}}{r_{ij}^{3}}s_{iz} + \frac{1}{3}g_{e}\alpha^{2}\mu_{B}H_{M}\sum_{i\neq j}\frac{\mathbf{r}_{i}\cdot\mathbf{r}_{ij}}{r_{ij}^{3}}s_{jz} + \left(\frac{2}{3}-\frac{1}{6}g_{e}\right)\alpha^{2}\mu_{B}H_{M}\sum_{i}\nabla_{i}^{2}s_{iz} - \frac{Z}{3}(1+g_{e})\alpha^{2}\mu_{B}H_{M}\sum_{i}\frac{1}{r_{i}}s_{iz} + \frac{1}{3}Z\frac{m}{M}g_{e}\alpha^{2}\mu_{B}H_{M}\sum_{i}\frac{1}{r_{i}}s_{iz} + \frac{1}{3}Z\frac{m}{M}g_{e}\alpha^{2}\mu_{B}H_{M}\sum_{i}\frac{1}{r_{i}}s_{iz} + \frac{1}{3}Z\frac{m}{M}g_{e}\alpha^{2}\mu_{B}H_{M}\sum_{i}\frac{1}{r_{i}}s_{iz} + \frac{1}{3}Z\frac{m}{M}g_{e}\alpha^{2}\mu_{B}H_{M}\sum_{i\leq j}\frac{1}{r_{i}}s_{iz} + \frac{1}{r_{i}}\frac{1}{r_{j}}s_{jz}\right),$$
(2)

where the free electron g_J factor is [17]

$$g_e = -2[1 + \alpha/2\pi - 0.328\,478\,965(\alpha/\pi)^2 + 1.176\,11(\alpha/\pi)^3 + \dots], \qquad (3)$$

m/M is the electron to nuclear mass ratio, and Z is the nuclear charge. The application of angular momentum algebra yields the following expression:

$$g_{J} = g_{e} + \frac{1}{\sqrt{(2J+1)(J+1)J}} \bigg[\alpha^{2} \bigg(\frac{g_{e}}{6} - \frac{2}{3} \bigg) F_{5} + \alpha^{2} \frac{Z}{3} \big[1 + g_{e} (1 - m/M) \big] F_{6} \\ - \alpha^{2} \frac{1}{3} (1 + g_{e}) F_{7}^{(1)} - \alpha^{2} \frac{1}{3} g_{e} F_{7}^{(2)} - \alpha^{2} \frac{Z}{3} \frac{m}{M} g_{e} F_{5} \bigg],$$
(4)

where the reduced matrix elements F_5 , F_6 , $F_7^{(1)}$, $F_7^{(2)}$, and F_S are defined with respect to an S state nonrelativistic wave function Ψ :

$$F_5 = \sum_i \langle \Psi || \nabla_i^2 || \Psi \rangle \langle 1/2 || s_i || 1/2 \rangle, \qquad (5)$$

$$F_6 = \sum_i \langle \Psi || \frac{1}{r_i} || \Psi \rangle \langle 1/2 || s_i || 1/2 \rangle, \qquad (6)$$

$$F_7^{(1)} = \sum_{i \neq j} \langle \Psi || \frac{\mathbf{r}_i \cdot \mathbf{r}_{ij}}{r_{ij}^3} || \Psi \rangle \langle 1/2 || s_i || 1/2 \rangle, \qquad (7)$$

$$F_7^{(2)} = \sum_{i \neq j} \langle \Psi || \frac{\mathbf{r}_i \cdot \mathbf{r}_{ij}}{r_{ij}^3} || \Psi \rangle \langle 1/2 || s_j || 1/2 \rangle, \qquad (8)$$

$$F_{S} = \sum_{i \neq j} \langle \Psi || \frac{\mathbf{r}_{i} \cdot \mathbf{r}_{j}}{r_{i}^{3}} || \Psi \rangle \langle 1/2 || s_{i} || 1/2 \rangle.$$
(9)

In order to exhibit all the nuclear mass terms explicitly, we rescale the Hamiltonian for a three-electron atomic system according to $r \rightarrow (m/\mu)r$. The resulting Hamiltonian is then

$$H = H_0 + \lambda H', \tag{10}$$

with

$$H_0 = -\frac{1}{2} \sum_{i=1}^{3} \nabla_i^2 - Z \sum_{i=1}^{3} \frac{1}{r_i} + \sum_{i>j}^{3} \frac{1}{r_{ij}}, \qquad (11)$$

and

$$H' = \sum_{i>j}^{3} \nabla_i \cdot \nabla_j, \qquad (12)$$

in units of $2R_M$, where $R_M = (1 - \mu/M)R_{\infty}$, $\mu = mM/(m + M)$ is the electron reduced mass, and $\lambda = -\mu/M$, which can be treated as a perturbation parameter. The Schrödinger equation

$$H\Psi = E\Psi \tag{13}$$

can be solved perturbatively by expanding Ψ and E according to

$$\Psi = \Psi_0 + \lambda \Psi_1 + \dots, \tag{14}$$

$$E = \varepsilon_0 + \lambda \varepsilon_1 + \lambda^2 \varepsilon_2 + \dots \qquad (15)$$

Thus Eq. (13) becomes

$$H_0\Psi_0 = \varepsilon_0\Psi_0, \qquad (16)$$

$$(\varepsilon_0 - H_0)\Psi_1 = (H' - \varepsilon_1)\Psi_0.$$
(17)

 ε_1 and ε_2 are

$$\varepsilon_1 = \langle \Psi_0 | H' | \Psi_0 \rangle, \tag{18}$$

$$\varepsilon_2 = \langle \Psi_0 | H' | \Psi_1 \rangle - \varepsilon_1 \langle \Psi_0 | \Psi_1 \rangle. \tag{19}$$

Both Ψ_0 and Ψ_1 were solved variationally in multiple basis sets in Hylleraas coordinates containing terms of the form [14]

$$r_1^{j_1}r_2^{j_2}r_3^{j_3}r_{12}^{j_{12}}r_{23}^{j_{23}}r_{31}^{j_{11}}e^{-\alpha r_1-\beta r_2-\gamma r_3}\chi_1, \qquad (20)$$

where χ_1 is the spin function. The perturbing effect of mass polarization $\lambda H'$ on the expectation value of an operator A can be obtained using

$$\Psi = \Psi_0 + \lambda(\Psi_1 - \langle \Psi_1 | \Psi_0 \rangle \Psi_0) + \dots, \qquad (21)$$

where the extra term $-\langle \Psi_1 | \Psi_0 \rangle \Psi_0$ is added to Ψ_1 so that the first two terms of the right-hand side are orthogonal to each other [18]. Thus,

$$\langle \Psi | A | \Psi \rangle = A_0 + \lambda A_1 + \dots, \qquad (22)$$

where

$$A_0 = \langle \Psi_0 | A | \Psi_0 \rangle, \qquad (23)$$

and

$$A_1 = 2\langle \Psi_0 | A | \Psi_1 \rangle - 2\langle \Psi_0 | \Psi_1 \rangle \langle \Psi_0 | A | \Psi_0 \rangle.$$
 (24)

Furthermore, due to the use of μ -scaled atomic units in Eq. (10), the units of $\langle \Psi | A | \Psi \rangle$ in Eq. (22) are $(\mu/m)^n 2R_{\infty}$, where -n is the degree of homogeneity of operator A in three-electron coordinate space. We therefore have the explicit mass-dependent formula

$$\langle \Psi | A | \Psi \rangle = \left(\frac{\mu}{m}\right)^n (A_0 + \lambda A_1 + \ldots) \text{ in } 2R_{\infty}.$$
 (25)

Equation (4) can thus be recast into the following expression which is general for *S* states and correct to orders α^2 , $\alpha^2 m/M$, and α^3 :

$$\frac{g_J}{g_e} - 1 = \frac{1}{\sqrt{(2J+1)(J+1)J}} \times \left(\alpha^2 C_{20} + \alpha^3 C_{30} + \alpha^2 \frac{m}{M} C_{21}\right), \quad (26)$$

where

$$C_{20} = \frac{1}{2} F_{5\infty} + \frac{1}{6} ZF_{6\infty} - \frac{1}{6} F_{7\infty}^{(1)} - \frac{1}{3} F_{7\infty}^{(2)}, \quad (27)$$

TABLE I. Reduced matrix elements $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}^{(1)}$, $F_{7\infty}^{(2)}$, and $F_{5\infty}$, as well as the coefficients $\tilde{\epsilon}_5$, $\tilde{\epsilon}_6$, $\tilde{\epsilon}_7^{(1)}$, $\tilde{\epsilon}_7^{(2)}$, and $\tilde{\epsilon}_S$ for the 2^2S state of Li. Units are $2R_{\infty}$.

Term	Value	Term	Value
$F_{5\infty}$	-0.598 033 56(7)	$\tilde{\epsilon}_5$	0.01802(1)
Fem	-0.57337^{a} 0 441 329 87(6)	Ĩ.	-0.016642(1)
$r^{(1)}$	0.434 24 ^a 0.725 056 01(5)	حور تع	-0.047.045(2)
<i>I</i> ' 7∞ (2)	0.728 40 ^a	e7 (2)	-0.047 043(2)
$F_{7\infty}^{(2)}$	0.032 708 34(5) 0.026 45 ^a	$\tilde{\epsilon}_7^{(2)}$	0.011 209(3)
$F_{S^{\infty}}$	-0.003271(2) 0.0^{a}	$ ilde{oldsymbol{\epsilon}}_S$	0.319 20(5)

^aHegstrom, Ref. [2].

$$C_{30} = -\frac{1}{6\pi} F_{5\infty} + \frac{1}{12\pi} ZF_{6\infty} - \frac{1}{12\pi} F_{7\infty}^{(1)}, \quad (28)$$

$$C_{21} = -F_{5\infty} - \frac{1}{2} ZF_{6\infty} - \frac{1}{3} ZF_{S\infty} + \frac{1}{6} F_{7\infty}^{(1)} + \frac{1}{3} F_{7\infty}^{(2)}$$

+
$$\frac{1}{2}\tilde{\epsilon}_5$$
 + $\frac{1}{6}Z\tilde{\epsilon}_6 - \frac{1}{6}\tilde{\epsilon}_7^{(1)} - \frac{1}{3}\tilde{\epsilon}_7^{(2)}$, (29)

the subscript ∞ means that the reduced matrix elements of F_i are calculated using an infinite nuclear mass wave function, and $\tilde{\epsilon}_5 = -A_1$ in Eq. (25) for the case of $A = F_5$, etc. In Eq. (26), the only nuclear mass-dependent term is the one proportional to C_{21} . The isotope shift for two isotopes M_1 and M_2 can thus be expressed in the form

$$\frac{g_J(M_1)}{g_J(M_2)} - 1 = \frac{1}{\sqrt{(2J+1)(J+1)J}} \left(\frac{m}{M_1} - \frac{m}{M_2}\right) \alpha^2 C_{21}.$$
(30)

Equations (16) and (17) were solved variationally in Hylleraas basis sets Eq. (20). The precision for the ground

state energy of lithium is about 7 parts in 10¹³. Table I lists the reduced matrix elements of $F_{5\infty}$, $F_{6\infty}$, $F_{7\infty}^{(1)}$, $F_{7\infty}^{(2)}$, and $F_{S^{\infty}}$, as well as their finite nuclear mass corrections $\tilde{\boldsymbol{\epsilon}}_5, \, \tilde{\boldsymbol{\epsilon}}_6, \, \tilde{\boldsymbol{\epsilon}}_7^{(1)}, \, \tilde{\boldsymbol{\epsilon}}_7^{(2)}, \, \text{and} \, \tilde{\boldsymbol{\epsilon}}_S$ for the ground state of lithium, together with a comparison with the work of Hegstrom [2]. Our calculations have dramatically improved the accuracy of Hegstrom's results by several orders of magnitude. Table II lists the contributions to the $g_J/g_e - 1$ for ⁷Li in the $2^{2}S$ and $3^{2}S$ states and for the ground state ${}^{9}Be^{+}$, together with comparisons with other calculations and experiments. The computational uncertainties that we have achieved for $g_J/g_e - 1$ are 0.2 ppm (parts per million), 3 ppm, and 0.03 ppm for the ⁷Li $2^{2}S$, ⁷Li $3^{2}S$, and ⁹Be⁺ $2^{2}S$ states, respectively. On the other hand, the other theoretical values do not appear to have well converged. For the ground states of ⁷Li and ⁹Be⁺, our results are in agreement with the experimental values. However, the errors associated with the experimental values are too large to provide a severe test for orders α^3 and $\alpha^2 m/M$ effects. Finally, the isotope shifts for lithium are contained in Table III. The only available theoretical result is from Hegstrom's work [2] for ⁶Li and ⁷Li. Note that the finite nuclear mass corrections to the wave functions, which were completely neglected in Hegstrom's calculation, contribute at the 6% level for the ⁶Li-⁷Li case. All the atomic masses used in this work were taken from Ref. [19]. To the best of our knowledge, there are no experimental measurements reported for these isotope shifts.

In summary, we have obtained high-precision theoretical values of the g_J factors for lithium and Be⁺, including all relativistic and radiative corrections of orders α^2 , $\alpha^2 m/M$, and α^3 . For the first time, the isotope shifts in g_J have been predicted definitively for the ground and the first excited *S* states of lithium. For g_J , additional precisions for the experimental values are required in order to test the radiative correction of order α^3 and the relativistic recoil correction of order $\alpha^2 m/M$. On the theoretical side,

TABLE II. Contributions to $(g_J/g_e - 1) \times 10^6$ for the 2²S and 3²S states of ⁷Li and the 2²S state of ⁹Be⁺, and comparisons with other calculations and experiments.

Contribution	⁷ Li 2 ² S	⁷ Li 3 ² S	${}^{9}\text{Be}^{+} 2^{2}S$
α^2	-9.141458(2)	-3.114 536(9)	-28.604303(1)
Hegstrom [2]	-8.6865		
α^3	0.015 099 624(2)	0.005 235 687(7)	0.047 902 502 4(7)
Hegstrom [2]	0.0145		
$\alpha^2 m/M$	0.000 258 43(2)	0.000 018 96(9)	0.001 587 210(4)
Hegstrom [2]	0.0002		
Total	-9.126101(2)	-3.109282(9)	-28.554814(1)
Hegstrom [2]	-8.6718		
Veseth [3]	-9.209		
Veseth [4]	-8.879		
Lindroth and Ynnerman [5]	-8.85(10)		-28.23(25)
Marketos [6]	-7.022		
Experiment	$-9.14(32)^{a}$		$-28.59(21)^{b}$

^aArimondo et al. [7].

^bWineland *et al.* [8].

TABLE III. Isotope shifts in g_J for Li in the 2^2S and 3^2S states. In the table, $G(^{A}\text{Li}) = [g_J(^{A}\text{Li})/g_J(^{7}\text{Li}) - 1] \times 10^{11}$, where A denotes an isotope of Li.

Isotope	$2^{2}S$	$3^{2}S$
G(⁶ Li)	4.301 3(3) 3.0 ^a	0.315(1)
$G(^{8}\text{Li})$	-3.2428(2)	-0.238(1)
$G(^{9}\text{Li})$	-5.7578(4)	-0.422(2)
$G(^{11}\text{Li})$	-9.4266(7)	-0.691(3)

^aHegstrom, [2].

the next higher-order relativistic and QED corrections not included in the calculation are terms of order α^4 which could contribute to $g_J/g_e - 1$ at the 50 ppm level for the lithium ground state and thus could be comparable to the $\alpha^2 m/M$ terms. No analysis on these high-order terms has been reported even for an isolated lithium, although significant progress [20–23] has been made recently for an isolated helium. We hope the present work may stimulate further research activities in both theory and experiment.

The author thanks R. A. Hegstrom for very helpful discussions. Research support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

- [1] R.A. Hegstrom, Phys. Rev. A 7, 451 (1973).
- [2] R.A. Hegstrom, Phys. Rev. A 11, 421 (1975).
- [3] L. Veseth, Phys. Rev. A 22, 803 (1980).

- [4] L. Veseth, J. Phys. B 16, 2891 (1983).
- [5] E. Lindroth and A. Ynnerman, Phys. Rev. A 47, 961 (1993).
- [6] P. Marketos, Z. Phys. D 27, 219 (1993).
- [7] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
- [8] D. J. Wineland, J. J. Bollinger, and W. M. Itano, Phys. Rev. Lett. 50, 628 (1983).
- [9] H. Grotch and R. A. Hegstrom, Phys. Rev. A 4, 59 (1971).
- [10] F.G. Walther, W.D. Phillips, and D. Kleppner, Phys. Rev. Lett. 28, 1159 (1972).
- [11] Z.-C. Yan and G.W.F. Drake, Phys. Rev. A 50, R1980 (1994).
- [12] Z.-C. Yan, Phys. Rev. A 50, 3809 (1994).
- [13] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 79, 1646 (1997).
- [14] Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).
- [15] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 81, 774 (1998).
- [16] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 61, 022504 (2000).
- [17] T. Kinoshita and D. R. Yennie in *Quantum Electrodynamics*, edited by T. Kinoshita (World Scientific, Singapore, 1990).
- [18] L.I. Schiff, *Quantum Mechanics* (McGraw-Hill Book Company, New York, 1968), 3rd ed.
- [19] G. Audi and A. H. Wapstra, Nucl. Phys. A595, 409 (1995).
- [20] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 74, 4791 (1995).
- [21] T. Zhang, Z.-C. Yan, and G. W. F. Drake, Phys. Rev. Lett. 77, 1715 (1996).
- [22] T. Zhang, Phys. Rev. A 53, 3896 (1996).
- [23] K. Pachucki, Phys. Rev. Lett. 84, 4561 (2000).