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Calculations of Magnetic Moments for Three-Electron Atomic Systems
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The first fully correlated calculations of the magnetic moment in lithium are presented. Relative to
the free-electron value, the Zeeman gJ factor for the ground state lithium gJ�ge 2 1 is calculated to a
computational accuracy of 200 parts in 109, including relativistic and radiative corrections of orders a2,
a2m�M, and a3. The isotope shifts in gJ are predicted precisely for various isotopes. The extensions
to the first excited S state of lithium and the ground state of Be1 are made.
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The theoretical calculation of the magnetic moment for
an electron is a fundamental problem in atomic physics.
The gJ factor of a bound electron in an atom is the most
sensitive testing ground for relativistic and radiative effects
for the atom in external magnetic fields. Furthermore, for
a system more complicated than hydrogen, the study of
isotope shifts in gJ requires highly accurate atomic wave
functions. In this Letter, we report the first significant
theoretical progress for lithium since the early work of
Hegstrom [1,2]. Definitive values of gJ and its isotope
shifts will be established.

Based on the extended Breit equation which includes the
anomalous magnetic moment interactions, Hegstrom [1]
studied nuclear recoil and anomalous magnetic moment
corrections to the Hamiltonian of an n-electron atomic
system in external magnetic field and showed that the
magnetic-field dependence of the radiative corrections of
order a3 atomic units vanishes for S states. The lowest-
order radiative correction of order a3 atomic units is due
entirely to the anomalous magnetic moment of the free
electron. Thus, the formalism of Hegstrom in the non-
relativistic limit is valid up to the order of a3 atomic
units. Hegstrom [2] then evaluated the gJ factor of the
ground state lithium and predicted an isotope shift in
the ratio between 6Li and 7Li, within the Hartree-Fock
framework. Veseth [3] also calculated the gJ factors for
lithium and other elements using the spin-extended
Hartree-Fock theory. Other theoretical methods include
the many-body perturbation theory of Veseth [4], the
relativistic coupled-cluster single- and double-excitation
approximation of Lindroth and Ynnerman [5], and the
four-component nonperturbative relativistic formalism of
Marketos [6]. These theoretical results, however, vary
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over a considerable range. On the experimental side, the
lithium ground state gJ value may be derived from three
measurements of the ratios: gJ�Li��gJ�K�, gJ�K��gJ�Rb�,
and gJ�Rb��ge, where ge is the free-electron value, as
reviewed by Arimondo, Inguscio, and Violino [7]. Using
a laser fluorescence technique, Wineland, Bollinger, and
Itano [8] measured the gJ factor of the ground state Be1.
For few-electron atomic systems, the only isotope shift
in gJ that has been established both theoretically and
experimentally is for hydrogen [9,10].

From a computational point of view, for few-electron
systems, such as helium and lithium, the central prob-
lem for a well-converged evaluation of the gJ factor is the
adequate inclusion of electron-electron correlations in the
nonrelativistic wave functions. For helium, several calcu-
lations have been done in the past thirty years, including
two recent ones using fully correlated Hylleraas coordi-
nates [11,12]. For lithium, however, no such calculations
have been reported in the literature. The present work is
based on our recent advances [13–16] in high-precision
variational calculations for the lithium atom, using mul-
tiple basis sets in Hylleraas coordinates.

The starting point for evaluating the Zeeman gJ factor
for lithium in an S state is [2]

gJ � 2�H 0
Z���mBHMJ� , (1)

where the matrix element is evaluated in the state J � 1�2
and MJ � 1�2, H 0

Z is the magnetic-field dependent part
of the Hamiltonian, HM is the external magnetic field, and
mB is the Bohr magneton. Here a convention has been used
[2], in which the gJ factor for the electron is negative. The
Hamiltonian H 0

Z for S states can be written in the form of
(in atomic units throughout) [1]
H 0
Z � 2 mBgeHM
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where the free electron gJ factor is [17]
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ge � 2 2�1 1 a�2p 2 0.328 478 965�a�p�2

1 1.176 11�a�p�3 1 . . .� , (3)
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m�M is the electron to nuclear mass ratio, and Z is the
nuclear charge. The application of angular momentum
algebra yields the following expression:
gJ � ge 1
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where the reduced matrix elements F5, F6, F
�1�
7 , F

�2�
7 , and

FS are defined with respect to an S state nonrelativistic
wave function C:
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In order to exhibit all the nuclear mass terms explicitly,
we rescale the Hamiltonian for a three-electron atomic sys-
tem according to r ! �m�m�r . The resulting Hamiltonian
is then

H � H0 1 lH 0, (10)

with
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in units of 2RM , where RM � �1 2 m�M�R`, m �
mM��m 1 M� is the electron reduced mass, and l �
2m�M, which can be treated as a perturbation parameter.
The Schrödinger equation

HC � EC (13)

can be solved perturbatively by expanding C and E ac-
cording to

C � C0 1 lC1 1 . . . , (14)

E � ´0 1 l´1 1 l2´2 1 . . . . (15)

Thus Eq. (13) becomes

H0C0 � ´0C0 , (16)

�´0 2 H0�C1 � �H 0 2 ´1�C0 . (17)
´1 and ´2 are
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Both C0 and C1 were solved variationally in multiple
basis sets in Hylleraas coordinates containing terms of
the form [14]
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where x1 is the spin function. The perturbing effect of
mass polarization lH 0 on the expectation value of an op-
erator A can be obtained using

C � C0 1 l�C1 2 �C1jC0�C0� 1 . . . , (21)

where the extra term 2�C1jC0�C0 is added to C1 so that
the first two terms of the right-hand side are orthogonal to
each other [18]. Thus,

�CjAjC� � A0 1 lA1 1 . . . , (22)

where

A0 � �C0jAjC0� , (23)

and

A1 � 2�C0jAjC1� 2 2�C0 jC1� �C0jAjC0� . (24)

Furthermore, due to the use of m-scaled atomic units in
Eq. (10), the units of �CjAjC� in Eq. (22) are �m�m�n2R`,
where 2n is the degree of homogeneity of operator A
in three-electron coordinate space. We therefore have the
explicit mass-dependent formula

�CjAjC� �
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Equation (4) can thus be recast into the following expres-
sion which is general for S states and correct to orders a2,
a2m�M, and a3:
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TABLE I. Reduced matrix elements F5`, F6`, F
�1�
7` , F

�2�
7` , and

FS`, as well as the coefficients ẽ5, ẽ6, ẽ
�1�
7 , ẽ

�2�
7 , and ẽS for the

2 2S state of Li. Units are 2R`.

Term Value Term Value

F5` 20.598 033 56�7� ẽ5 0.018 02(1)
20.573 37a

F6` 0.441 329 87(6) ẽ6 20.016 642�1�
0.434 24a

F
�1�
7` 0.725 956 01(5) ẽ

�1�
7 20.047 045�2�

0.728 40a

F
�2�
7` 0.032 708 34(5) ẽ

�2�
7 0.011 209(3)

0.026 45a

FS` 20.003 271�2� ẽS 0.319 20(5)
0.0a

aHegstrom, Ref. [2].
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ẽ5 1
1
6

Zẽ6 2
1
6

ẽ
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the subscript ` means that the reduced matrix elements
of Fi are calculated using an infinite nuclear mass wave
function, and ẽ5 � 2A1 in Eq. (25) for the case of A �
F5, etc. In Eq. (26), the only nuclear mass-dependent term
is the one proportional to C21. The isotope shift for two
isotopes M1 and M2 can thus be expressed in the form

gJ�M1�
gJ�M2�
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2
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∂
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Equations (16) and (17) were solved variationally in
Hylleraas basis sets Eq. (20). The precision for the ground
state energy of lithium is about 7 parts in 1013. Table I
lists the reduced matrix elements of F5`, F6`, F�1�

7`
, F�2�

7`
,

and FS`, as well as their finite nuclear mass corrections
ẽ5, ẽ6, ẽ�1�

7 , ẽ�2�
7 , and ẽS for the ground state of lithium,

together with a comparison with the work of Hegstrom
[2]. Our calculations have dramatically improved the accu-
racy of Hegstrom’s results by several orders of magnitude.
Table II lists the contributions to the gJ�ge 2 1 for 7Li
in the 2 2S and 3 2S states and for the ground state 9Be1,
together with comparisons with other calculations and ex-
periments. The computational uncertainties that we have
achieved for gJ�ge 2 1 are 0.2 ppm (parts per million),
3 ppm, and 0.03 ppm for the 7Li 2 2S, 7Li 3 2S, and 9Be1

2 2S states, respectively. On the other hand, the other theo-
retical values do not appear to have well converged. For the
ground states of 7Li and 9Be1, our results are in agreement
with the experimental values. However, the errors associ-
ated with the experimental values are too large to provide
a severe test for orders a3 and a2m�M effects. Finally,
the isotope shifts for lithium are contained in Table III.
The only available theoretical result is from Hegstrom’s
work [2] for 6Li and 7Li. Note that the finite nuclear mass
corrections to the wave functions, which were completely
neglected in Hegstrom’s calculation, contribute at the 6%
level for the 6Li-7Li case. All the atomic masses used in
this work were taken from Ref. [19]. To the best of our
knowledge, there are no experimental measurements re-
ported for these isotope shifts.

In summary, we have obtained high-precision theoreti-
cal values of the gJ factors for lithium and Be1, includ-
ing all relativistic and radiative corrections of orders a2,
a2m�M, and a3. For the first time, the isotope shifts in
gJ have been predicted definitively for the ground and the
first excited S states of lithium. For gJ , additional preci-
sions for the experimental values are required in order to
test the radiative correction of order a3 and the relativistic
recoil correction of order a2m�M. On the theoretical side,
TABLE II. Contributions to �gJ�ge 2 1� 3 106 for the 2 2S and 3 2S states of 7Li and the 2 2S state of 9Be1, and comparisons
with other calculations and experiments.

Contribution 7Li 2 2S 7Li 3 2S 9Be1 2 2S

a2 29.141 458�2� 23.114 536�9� 228.604 303�1�
Hegstrom [2] 28.6865

a3 0.015 099 624(2) 0.005 235 687(7) 0.047 902 502 4(7)
Hegstrom [2] 0.0145

a2m�M 0.000 258 43(2) 0.000 018 96(9) 0.001 587 210(4)
Hegstrom [2] 0.0002

Total 29.126 101�2� 23.109 282�9� 228.554 814�1�
Hegstrom [2] 28.6718

Veseth [3] 29.209
Veseth [4] 28.879

Lindroth and Ynnerman [5] 28.85�10� 228.23�25�
Marketos [6] 27.022
Experiment 29.14�32�a 228.59�21�b

aArimondo et al. [7].
bWineland et al. [8].
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TABLE III. Isotope shifts in gJ for Li in the 2 2S and 3 2S
states. In the table, G�ALi� � �gJ �ALi��gJ �7Li� 2 1� 3 1011,
where A denotes an isotope of Li.

Isotope 2 2S 3 2S

G�6Li� 4.301 3(3) 0.315(1)
3.0a

G�8Li� 23.242 8�2� 20.238�1�
G�9Li� 25.757 8�4� 20.422�2�
G�11Li� 29.426 6�7� 20.691�3�
aHegstrom, [2].

the next higher-order relativistic and QED corrections not
included in the calculation are terms of order a4 which
could contribute to gJ�ge 2 1 at the 50 ppm level for the
lithium ground state and thus could be comparable to the
a2m�M terms. No analysis on these high-order terms has
been reported even for an isolated lithium, although sig-
nificant progress [20–23] has been made recently for an
isolated helium. We hope the present work may stimulate
further research activities in both theory and experiment.
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