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Bose-Einstein Condensates beyond Mean Field Theory: Quantum Backreaction as Decoherence
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We propose an experiment to measure the slow log�N� convergence to mean field theory (MFT)
around a dynamical instability. Using a density matrix formalism instead of the standard macroscopic
wave function approach, we derive equations of motion which go beyond MFT and provide accurate
predictions for the quantum break time. The leading quantum corrections appear as decoherence of the
reduced single-particle quantum state.
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A Bose-Einstein condensate (BEC) is described in mean
field theory (MFT) by a c-number macroscopic wave func-
tion, obeying the Gross-Pitaevskii nonlinear Schrödinger
equation. MFT is closely analogous to the semiclassical
approximation of single-particle quantum mechanics, with
the inverse square root of the number N of particles in the
condensate playing the role of h̄ as a perturbative parame-
ter. Since in current experimental condensates N is indeed
large, it is generally difficult to see qualitatively significant
quantum corrections to MFT. In the vicinity of a dynami-
cal instability in MFT, however, quantum corrections ap-
pear on time scales that grow only logarithmically with N
[1]. We propose an experiment to detect such quantum
corrections, and present a simple theory to predict them.
We show that, as the Gross-Pitaevskii classical limit of a
condensate resembles single-particle quantum mechanics,
so the leading quantum corrections appear in the single-
particle picture as decoherence.

We consider a condensate in which particles can only
effectively populate two second-quantized modes. This
model can be realized with a condensate in a double well
trap [2–7], or with an effectively two-component spinor
condensate [8,9] whose internal state remains uniform in
space [10]. Two internal states may be coupled by a
near-resonant radiation field [11,12], and if collisions do
not change spin states, there is also a simple nonlinear
interaction among them. In either case the total number
operator commutes with the Hamiltonian, and may be re-
placed with the c number N . Dropping c-number terms,
we may thus write the two-mode Hamiltonian
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where v is the coupling strength between the two conden-
sate modes, h is the two-body interaction strength, and
â1, â

y
1 , â2, and â

y
2 are particle annihilation and creation

operators for the two modes. We will take h and v to be
positive, since the relative phase between the two modes
may be redefined arbitrarily, and since without dissipation
the overall sign of H is insignificant.

Instead of considering the evolution of âj and its expec-
tation value in a symmetry-breaking ansatz, we will exam-
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whose expectation values define the reduced single-particle
density matrix (SPDM) Rij � �ây

i âj��N . It is convenient
to introduce the Bloch representation, by defining the an-
gular momentum operators,
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2 â1

2
, L̂y �

â
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The Hamiltonian Eq. (1) then assumes the form,

H � 2vL̂x 1
h

2
L̂2

z , (3)

and the Heisenberg equations of motion for the three an-
gular momentum operators of Eq. (2) read

d
dt

L̂x � 2i�L̂x , H� � 2
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L̂z � 2i�L̂z , H� � 2vL̂y . (4)

The mean field equations for the SPDM in the two-mode
model may be obtained, without invoking U(1) symmetry
breaking, by approximating second order expectation val-
ues �L̂iL̂j� as products of the first order expectation values
�L̂i� and �L̂j�:

�L̂iL̂j� 	 �L̂i� �L̂j� . (5)

Defining the single-particle Bloch vector �s �

�Sx , Sy , Sz� � � 2�L̂x �
N ,

2�L̂y�
N , 2�L̂z�

N �, k � hN�2 and using
Eq. (5), we obtain the nonlinear Bloch equations

�Sx � 2kSzSy ,

�Sy � vSz 1 kSzSx , (6)

�Sz � 2vSy .

Mean field trajectories �s�t� at four different k�v ratios are
plotted in Fig. 1. The norm j�sj is conserved in MFT, and so
for a pure SPDM, Eqs. (6) are equivalent to the two-mode
Gross-Pitaevskii (Bose-Josephson) equation [3–5]. The
© 2001 The American Physical Society
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FIG. 1. Mean field trajectories at (a) k � 0, (b) k � 1.02v,
(c) k � 2v, and (d) k � 20v.

nonlinear Bloch equations (6) depict a competition be-
tween linear Rabi oscillations in the SySz plane and non-
linear oscillations in the SxSy plane. For a noninteracting
condensate (Fig. 1a) the trajectories on the Bloch sphere
are circles about the Sx axis, corresponding to harmonic
Rabi oscillations. As k increases the oscillations become
more anharmonic until, above the critical value k � v

(Fig. 1b), the stationary point �s � �21, 0, 0� becomes
dynamically unstable, and macroscopic self-trapping can
occur (oscillations with a nonvanishing time averaged
population imbalance �Sz�t fi 0) [5]. In the vicinity of
the dynamically unstable point, MFT will break down on
a time scale only logarithmic in N , and so an improved
theory is desirable.

If we assume that the condensate remains mildly frag-
mented, so that the two eigenvalues of Rij are f and 1 2 f

for small f, we can take L̂i � Li 1 cdLi, where the c
number Li is O �N� and, throughout the Hilbert subspace
through which the system will evolve, all matrix elements
of cdLi are no greater than O �N

p
f �. The second order

moments

Dij � 4N22��L̂iL̂j 1 L̂jL̂i� 2 2�L̂i� �L̂j�� , (7)

will then be of order f. We can retain these, and so im-
prove on MFT, if we truncate the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy of expectation value equations
of motion at one level deeper: we eliminate the approxi-
mation (5), and instead impose

�L̂iL̂jL̂k� 	 �L̂iL̂j� �L̂k� 1 �L̂i� �L̂jL̂k� 1 �L̂iL̂k� �L̂j�

2 2�L̂i� �L̂j� �L̂k� . (8)

This approximation is accurate to within a factor of 1 1

O � f3�2�, better than (5) by one factor of f1�2. Succes-
sively deeper truncations of the hierarchy yield systemati-
cally better approximations as long as f is small.

Applying (7) and (8) to (4), we obtain the following set
of equations, in which the mean field Bloch vector drives
the fluctuations Dij , and is in turn subject to backreaction
from them:
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�Dxy � �v 1 kSx�Dxz 2 kSyDyz 1 kSz�Dxx 2 Dyy� ,

�Dxx � 22kSyDxz 2 2kSzDxy ,

�Dyy � 2�v 1 kSx�Dyz 1 2kSzDxy ,

�Dzz � 22vDyz .

In what follows, we will refer to (9) as evolution under
“Bogoliubov backreaction” (BBR).

We note that Eqs. (9) are identical to the equations of
motion one would obtain, for the same quantities, using
the Hartree-Fock-Bogoliubov Gaussian ansatz. And if the
second order moments Dij may initially be factorized as
Dij � didj �i, j � x, y, z�, then the factorization persists
and the time evolution of dx, dy, and dz is equivalent to
that of perturbations of the mean field equations (6):

�dx � 2k�Szdy 1 Sydz� ,

�dy � vdz 1 k�Szdx 1 Sxdz� , (10)

�dz � 2vdy .

Thus our equations for Dij are in a sense equivalent to
the usual Bogoliubov equations. The quantitative advan-
tage of our approach therefore lies entirely in the wider
range of initial conditions that it admits, which may more
accurately represent the exact initial conditions. For in-
stance, a Gaussian approximation will have Dxx � O �1�
in the ground state, where in fact Dxx � O �N21�. This
leads to an error of order N21�2 in the Josephson frequency
computed by linearizing (9) around the ground state, even
though the Gaussian backreaction result should naively be
accurate at this order. Our SPDM approach does not have
this flaw.

For finite motion of the Bloch vector, our formalism of-
fers an efficient method to depict the backreaction of the
Bogoliubov equations on the mean field equations via the
coupling terms 2kDyz�2 and kDxz�2 in (9). Because
in general Dyz�t� fi Dxz�t�, this backreaction has the ef-
fect of breaking the unitarity of the mean field dynamics.
Consequently, the BBR trajectories are no longer confined
to the surface of the Bloch sphere, but penetrate to the
interior (representing mixed-state Rij , with two nonzero
569
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eigenvalues). Thus although decoherence is generally con-
sidered as suppressing quantum effects, decoherence of the
single-particle quantum state of a condensate is itself the
leading quantum correction (due to interparticle entangle-
ment) to the effectively classical MFT.

In order to confirm this decoherence, and demonstrate
how the BBR equations (9) improve on the mean field
equations (6), we compare the trajectories obtained by
these two formalisms to exact quantum trajectories, ob-
tained by fixing the total number of particles N � 50,
thereby obtaining an N 1 1 dimensional representation
of the operators in Eq. (4) and solving it numerically,
using a Runge-Kutta algorithm. The results for the ex-
perimentally realizable initial state where all particles are
in one of the modes (corresponding to the initial condi-
tions Sx � Sy � 0, Sz � 21, Dxx � Dyy � 2�N , Dxy �
Dxz � Dyz � Dzz � 0) and k � 2v are shown in Fig. 2.
The MFT trajectory approaches the dynamical unstable
point �s � �21, 0, 0�. Consequently, the quantum trajec-
tory sharply breaks away from the MFT trajectory as it
approaches this point, entering the Bloch sphere interior.
While still periodic on a much shorter time scale than the
exact evolution, the BBR evolution (dashed curve) pro-
vides an excellent prediction of the time of the breaking
away from MFT (the “quantum break time”).

The quantum break time near a dynamical instability is
expected to grow logarithmically with N . In Fig. 3 we plot
the von Neumann entropy

S � 2
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(11)

of the exact reduced single-particle density operator, as a
function of the rescaled time vt with N � 10, 20, 40, 80,
160, and 320 particles, for the same initial conditions as
in Fig. 2. Since the MFT entropy is always zero, S serves
as a measure of convergence. The quantum break time
is clearly evident, and indeed increases as log�N�. The
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FIG. 2. Mean field �· · ·�, Bogoliubov backreaction � �,
and exact 50 particles � � trajectories starting with all par-
ticles in one mode, at k � 2v.
570
single-particle entropy is measurable, in the internal state
realization of our model, by applying a fast Rabi pulse
and measuring the amplitude of the ensuing Rabi oscil-
lations, which is proportional to the Bloch vector length
j�sj. (Successive measurements with Rabi rotations about
different axes, i.e., by two resonant pulses differing by a
phase of p�2, will control for the dependence on the angle
of �s.) In a double well realization, one could deter-
mine the single-particle entropy by lowering the poten-
tial barrier, at a moment when the populations on each
side were predicted to be equal, to let the two parts of the
condensate interfere. The fringe visibility would then be
proportional to j�sj.

Decoherence of quantum systems coupled to reservoirs
shows similar behavior to Fig. 3. The entropy of a dynami-
cally unstable quantum system coupled to a reservoir [13],
or of a stable system coupled to a dynamically unstable
reservoir, is predicted to grow linearly with time, at a rate
independent of the system-reservoir coupling, after an on-
set time proportional to the logarithm of the coupling. This
shows that one can really consider the Bogoliubov fluctua-
tions as a reservoir [14], coupled to the mean field with
a strength proportional to 1�N . But one can also con-
sider decoherence due to a genuine reservoir (unobserved
degrees of freedom, as opposed to unobserved higher mo-
ments). For example, thermal particles scattering off the
condensate mean field will cause phase diffusion [15] at
a rate G which may be estimated in quantum kinetic the-
ory as proportional to the thermal cloud temperature. For
internal states not entangled with the condensate spatial
state, G may be as low as 1025 Hz under the coldest ex-
perimental conditions, whereas for a double well the rate
may reach 1021 Hz. Further sources of decoherence may
be described phenomenologically with a larger G.

Evolving the full N-particle density matrix under the
appropriate quantum kinetic master equation [4], we again
solve for �s either numerically or in BBR approximation.
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FIG. 3. Growth of the von Neumann entropy S of the quantum
reduced single-particle density operator, at k � 2v, for N �
10 � ? �, 20 �· · ·�, 40 � �, 80 � �, 160 � ? ? �, and
320 �– – – –� particles. Initial conditions are the same as in
Fig. 2.
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FIG. 4. Time at which S reaches 0.2 as a function of the par-
ticle number N , according to the BBR equations (9), modified to
include thermal phase diffusion. Four different values of G are
shown: G � 0 � �, G � 1024v �· · ·�, G � 1023v � �,
and G � 1022v � ? �. Exact quantum results are presented
for G � 0 (circles) and G � 1022v (squares). Initial conditions
k and v are the same as in Figs. 2 and 3.

In Fig. 4 we show the time at which the single-particle
entropy reaches a given value, as a function of the number
of particles, for various G, according to the modified BBR
equations. The exact quantum results (limited by com-
putational power to N 
 103) are presented for the two
limiting values of G, showing excellent agreement with the
BBR predictions. In addition to showing the usefulness of
the BBR theory in describing regimes beyond the reach of
exact numerical solutions, the results of Fig. 4 show how
quantum corrections can be experimentally distinguished
from ordinary thermal effects: they provide a quantum
saturation of the dephasing rate at low temperature. Such
saturation is a common phenomenon in decoherence,
which further supports our view of quantum backreaction
as decoherence.

To conclude, we have shown that significant quantum
corrections to the Gross-Pitaevskii MFT, in the vicinity
of its dynamical instabilities, can be measured in a two-
mode BEC under currently achievable experimental con-
ditions. We have derived a simple theory that accurately
predicts the leading quantum corrections and the quan-
tum break time. Our picture of quantum backreaction in
BECs as decoherence suggests new lines of investigation
for both experiment and theory: measurements of single-
particle entropy in condensates, descriptions of conden-
sates with mixed single-particle states (instead of the usual
macroscopic wave functions), and general questions of de-
coherence under nonlinear evolution. Exploring these pos-
sibilities, beyond the two-mode model considered here,
provides many goals for further research.
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