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Anomalous Modes Drive Vortex Dynamics in Confined Bose-Einstein Condensates
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The dynamics of vortices in trapped Bose-Einstein condensates are investigated both analytically and
numerically. In axially symmetric traps, the critical rotation frequency for metastability of an isolated
vortex coincides with the largest vortex precession frequency (or anomalous mode) in the Bogoliubov
excitation spectrum. The number of anomalous modes increases for an elongated condensate. The largest
mode frequency exceeds the thermodynamic critical frequency and the nucleation frequency at which
vortices are created dynamically. Thus, anomalous modes describe both vortex precession and the critical
rotation frequency for creation of the first vortex in an elongated condensate.
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Bose-Einstein condensation (BEC) and superfluidity are
two entangled core issues of low-temperature physics, and
recent experimental developments now allow us to study
them in a nearly ideal system: a dilute gas of alkali
atoms with well-understood interactions [1–3]. Many key
aspects of BEC have been clarified since the first experi-
mental observations, and during the past year much at-
tention has been given to manifestations of superfluidity.
The “scissors mode” of excitation of trapped condensates
[4] implies the irrotational flow characteristic of superflu-
ids. Quantized vortices, which have long been known as
fundamental excitations of superfluid helium and super-
conductors, have been observed directly in one- [5,6] and
two-component [7] trapped Bose gases.

Multiple vortices have recently been generated in
confined single-component condensates [5] by rotating a
weakly anisotropic trap at an angular frequency V. This
approach resembles the classic rotating-bucket experi-
ments on liquid helium [8], where vortices first appear
[9] at a critical frequency Vc above which the presence
of the vortex lowers the total free energy [10,11]. There
is a discrepancy, however, between the observations of
Madison et al. [5] and simple theoretical considerations
based on the equilibrium solution of the Gross-Pitaevskii
(GP) equation, which has otherwise been remarkably
successful in describing condensate behavior [1]; in par-
ticular, the frequency at which vortices are first observed
is significantly higher than equilibrium estimates of Vc.

The resolution of this discrepancy is the subject of the
present paper. In particular, we find that the “anomalous
modes” of the Bogoliubov spectrum determine the critical
rotation frequencies at which vortex arrays are observed in
the ENS experiment [5]; they also determine the frequency
of precession of the vortex core observed at JILA [6].

In trapped condensates, several factors influence the
critical rotation frequency for appearance and stability of
vortices, and for their subsequent dynamical motion.
0031-9007�01�86(4)�564(4)$15.00
(1) An energy barrier at the surface of the condensate
[12] inhibits vortex penetration of its interior. Thus, vor-
tices are predicted to nucleate spontaneously at a frequency
Vn . Vc [13], whose value coincides with the criterion
for the Landau instability of surface excitations [14–16]
and with the effective disappearance of the surface barrier
[13]. We show below that, while Vn exceeds Vc for the
cigar geometry of the ENS experiments [5], it is still lower
than the frequency at which vortices are first observed.

(2) Stringari [17] has shown that Vc increases with T ,
reaching a maximum close to the BEC transition Tc. The
temperature T � 0.8Tc required to match the observed
critical frequency, however, is much larger than the tem-
perature at which the experiments are performed.

(3) A condensate with a vortex first becomes stable
against small perturbations at the metastability frequency
Vm. One definition for metastability is that the energy
per particle must not decrease under infinitesimal dis-
placements of the vortex from the condensate center; for
a disk-shaped condensate, this yields Vm � 3

5Vc in the
Thomas-Fermi (TF) limit [12]. Equivalently, the Bogoli-
ubov excitation spectrum must contain only modes with
positive energy. A nonrotating axisymmetric condensate
with a singly quantized vortex has at least one “anoma-
lous mode”; such modes have a negative excitation energy
´a and a positive norm [18,19]. For a rotating axisym-
metric trap, these anomalous modes are Doppler-shifted
upward by V, with the metastability frequency Vm �
max�j´aj��h̄. As shown below, Vm can exceed both Vc

and Vn in cigar traps.
This criterion for the onset of linear stability agrees

well with the large frequency at which vortices first ap-
pear experimentally in cigar-shaped condensates [5]. It
also explains why the observed critical frequency is in-
dependent of whether the condensate is first cooled and
subsequently rotated, or vice versa. Otherwise, the criti-
cal rotation should be greater for the cool-and-then-rotate
© 2001 The American Physical Society
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scenario, since vortices must surmount the energy barrier
at the condensate surface, penetrating the cloud only at the
nucleation frequency Vn . Vc.

(4) The anomalous modes correspond to the precession
of the vortex core about the origin of the trap [12,20]. For
V , Vm, the vortex moves in the same direction as the
superfluid flow around the core. Hence, the anomalous
mode(s) should describe the motion of one-component vor-
tices in recent JILA experiments [6,7].

The present work links anomalous modes with these
various observations. We proceed from the zero-
temperature description of the order parameter (or wave
function) for a condensate of 87Rb atoms, as a solution to
the time-dependent GP equation

i≠tc�r, t� � �T 1 Vtrap 1 VH 2 VLz�c�r, t� , (1)

with the kinetic energy operator given by T � 2
1
2

�=2, the
Hartree field by VH � 4phjcj2, and trap potential by
Vtrap � 1

2 �l2�1 1 ex�x2 1 l2�1 1 ey�y2 1 z2�, where
l � vr�vz is the trap anisotropy and ex , ey describe
(small) departures of the trap from axial symmetry.
The centrifugal term 2VLz � iV�x≠y 2 y≠x� appears
for systems rotating about the z axis at a frequency
V. Energy, length, and time are, respectively, given
in harmonic oscillator units h̄vz , dz �

p
h̄�Mvz , and

v21
z , where vz is the axial trap frequency and M is

the atomic mass. Normalizing the condensate wave
function

R
dr jc�r, t�j2 � 1 yields the scaling parameter

h � Na�dz , where a � 100a0 � 5.29 nm is the 87Rb
scattering length [21] and N is the number of condensate
atoms. As parameters typical of the recent experiments
at ENS [5] and JILA [6,7], we take N � 1.4 3 105 with
�nr , nz� � �vr , vz��2p � �169, 11.7� Hz and �ex , ey� �
�0.03, 0.09�, and N � 3 3 105 with �7.8, 7.8� Hz and
ex � ey � 0, respectively.

The stationary solutions of the GP equation, defined
as local minima of the free energy, are found numeri-
cally by norm-preserving imaginary time propagation
using an adaptive stepsize Runge-Kutta integrator. The
spatial dependence of the complex condensate wave
function employs a discrete-variable representation [22]
based on Gaussian quadrature, and is assumed to be
even under inversion of z. The numerical techniques
are described in greater detail elsewhere [13,22]. The
initial condensate amplitude is taken to be the TF wave
function cTF �

p
�mTF 2 Vtrap��4ph, where mTF �

1
2 �15l2h�2�5 is the chemical potential. The GP equation
for a given value of V and N is propagated in imaginary
time until the fluctuations in both the chemical potential
and the norm become smaller than 10211.

Once the system reaches equilibrium, its re-
sponse to small disturbances is found by substituting
c ! e2imt�c 1 ue2i´t 1 yei´t� in Eq. (1). The Bogoli-
ubov spectrum of eigenvalues ´ is found by linearizing in
the quasiparticle amplitudes u�r� and y�r�.
Figure 1 shows the critical frequency Vc�2p and
the nucleation frequency Vn�2p as a function of trap
anisotropy l. We ignore the small in-plane trap distortion
(setting ex � ey � 0) in order to simplify the compu-
tation. In this axisymmetric system, the thermodynamic
critical frequency Vc is the energy difference between
condensates with and without a vortex at the trap center
(divided by h̄), since the rotation Doppler shifts the former
by exactly 2V; for the parameters of the ENS experi-
ment, l � 14.44, we obtain Vc�2p � 0.4nr � 68 Hz,
in good agreement with the TF estimate but much lower
than the observed value Vobs�2p � 0.7nr � 120 Hz.
We find that inclusion of the small in-plane anisotropy
does not appreciably increase the value of Vc, in contrast
with results reported recently [23]. The critical nucle-
ation frequency Vn � min�´nm�h̄m� defines the rotation
frequency at which the first Bogoliubov excitation of the
vortex-free condensate becomes unstable [14]. We obtain
Vn�2p � 0.52nr � 88 Hz, which is larger than Vc�2p

but still too low to account for the experimental result.
Also shown in Fig. 1 are the frequencies of the anoma-

lous modes jvaj�2p � j´aj�h with even z parity (plotted
as positive values). These are Bogoliubov excitations of
the vortex state with negative energy but positive norm,
and relative angular momentum 2h̄. For spherical or pan-
cake geometries, the spectrum contains only one anoma-
lous mode. It describes the precession of the vortex about
the center of the trap, in the same sense as the circula-
tion about the core [20] at a frequency va �

3
5Vc in the

TF limit [12]. As l increases and the vortex line stretches,
however, additional anomalous modes appear in the energy
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FIG. 1. The numerical values for the thermodynamic critical
frequency Vc�2p (solid curve), the nucleation frequency
Vn�2p (dashed curve), and the even z-parity anomalous mode
frequencies (circles) are shown as a function of trap anisotropy
l � nr�nz . Parameters are N � 1.4 3 105, nz � 11.7 Hz,
and ex � ey � 0. The dotted vertical line corresponds to
anisotropy relevant to the ENS experiments, and the “≠” labels
the frequency at which vortices are first observed.
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spectrum [24,25], corresponding to the precession of a spa-
tially deformed vortex line. Physically, Vc involves only
a straight vortex (note, however, that Ref. [23] finds a de-
formed vortex for the ground state in very elongated con-
densates), but Vm involves linearized deformations. For
an elongated condensate (l ¿ 1), the large curvature of
the condensate surface readily induces distortions. The
Bogoliubov amplitudes are highly localized radially in the
vortex core and oscillate as a function of z, with maximum
amplitude near the condensate surface. In the TF limit,
n anomalous modes appear above a critical anisotropy
ln $

p
n�n 1 1��2 [25].

Excitation of the anomalous modes can lower the sys-
tem’s free energy, destabilizing the vortex state. Metasta-
bility of the vortex is guaranteed for rotation frequencies
exceeding the largest anomalous mode, Vm � max�jvaj�.
In the TF limit, Vm exceeds Vc when l . 2 [25], which
is close to the value of l � 2.5 found numerically (see
Fig. 1). When such elongated condensates rotate with
Vc , V , Vm, the straight vortex line along the z axis
can lower its energy by undergoing a finite-amplitude de-
formation. The ground state corresponds to a curved vor-
tex displaced from the z axis [23,25], but experiments have
not detected these states. For the ENS parameters, nu-
merical analysis finds the metastability critical frequency
Vm�2p � 0.73nr � 124 Hz, very close to the observed
value Vobs�2p � 120 Hz.

For the spherical trap relevant to the JILA experiments,
the anomalous mode frequency in the TF limit has the pre-
dicted form jvaj�v � 8

5 �j�R� ln�1.96R�j�, if we neglect
terms of relative order �j�R� ln�R�j� � 0.1, where R �
�15h�1�5 is the TF radius and j � 1�R is the dimension-
less healing length. We find jvaj�2p � 1.58 6 0.16 Hz,
in reasonable agreement with the observed precession fre-
quency of 1.8 6 0.1 Hz. The value of jvaj, however, is
sensitive to the number of condensate atoms (~ N22�5)
and the displacement of the vortex from the trap center
[26] ���~ �1 2 �r�R�2�21���. Note that the JILA observa-
tions confirm the predicted negative sign of the anomalous
frequency, for the vortex is seen to precess in the same
sense as the superfluid flow around the core. Interestingly,
the spectrum computed numerically also contains a coun-
terprecessing (i.e., nonanomalous) mode with frequency
3.63 Hz and two nodes along z; this may correspond to
the distorted “rogue” vortices observed in two-component
systems [6].

To make closer contact between vortex precession and
anomalous Bogoliubov modes, the dynamics of a trapped
vortex are explored by real-time propagation of the GP
equation (1). Once the ground state has been obtained,
an off-center vortex with counterclockwise circulation is
imposed on the condensate wave function at t � 0 by the
method of phase imprinting [27]. The vortex is displaced
by 1.57dr along x̂ from the trap origin, corresponding to
1.3 mm and 6.1 mm for the ENS and JILA condensates,
respectively. In both cases, the vortices undergo counter-
566
clockwise precession, which is the same sense as the cir-
culation around the vortex core.

For the JILA parameters, the period is found to be
623 6 3 ms (the uncertainty reflects the coarseness of
the spatial and temporal grids), yielding a precession fre-
quency of vp�2p � 1.61 6 0.01 Hz in excellent agree-
ment with the value of the predicted anomalous-mode
frequency discussed above. The phonons that are also
produced by phase imprinting [27] only weakly affect
the vortex motion, and they rapidly decay into unobserv-
able high-frequency collective modes. The vortex itself is
slightly curved, as discussed in Ref. [25]. No noticeable
variation in the vortex displacement from the trap center
(spiraling) was found after three full precessions.

As shown in Fig. 2, precession of an off-center vortex
in the ENS trap is associated with a pronounced curvature
of the vortex line. The precession appears to be most
rapid near the surface of the condensate; by 12 ms, the
ends of the vortex have returned to their initial location,
while the center lags behind by almost 180±. Defining the
precession by the motion near the surface, one obtains a
frequency of approximately 85 Hz. This value (and to
some extent the shape of the vortex) is consistent with
the second-largest anomalous mode in the excitation
spectrum shown in Fig. 1, jvaj�2p � 0.51nr � 87 Hz,
which has two nodes along z. The excitation of this
precession mode probably arises from imprinting a cir-
culation pattern aligned with the z axis on a condensate

FIG. 2. Numerical simulation for the precession of a vortex
in the ENS trap. Frames in raster order correspond to 4 ms
increments after the initial phase imprint. Square panels, which
are 8dr � 6.7 mm on a side, show the integrated density down
ẑ; the corresponding vortex line (viewed 9± off the z axis toward
2ŷ) is rendered above each frame.
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FIG. 3. Numerical simulation for a condensate in the ENS
trap that starts rotating at V � 0.8vr at t � 0. Images in
raster order correspond to 150 ms through 500 ms in 50 ms
increments, and are each 10 mm 3 10 mm. The condensate
density (integrated down ẑ) is shown in the rotating frame.

that is highly nonuniform radially; the initial straight
vortex would have some overlap with all of the 11 even
z-parity negative-energy modes found above for this
configuration.

The critical frequency for vortex nucleation in elongated
traps is confirmed by numerical solution of the time-
dependent GP equation. The initially axisymmetric ENS
condensate is simultaneously distorted (ex , ey fi 0) and
rotated at t � 0. The GP equation is propagated in the
rotating frame for 500 ms with either V � 0.7vr or
0.8vr . No vortices are produced for the V � 0.7vr

case. As shown in Fig. 3, however, when V � 0.8vr

vortices appear at the condensate surface by t � 200 ms,
and fully penetrate the cloud by t � 300 ms. In the ab-
sence of dissipation, the vortex motion remains extremely
turbulent; the dynamics of nucleating vortices will be
addressed in greater detail elsewhere [28]. In the ENS
experiment, the condensates are held for 500 ms. The re-
producibility of those observations suggests that the vortex
structures may have approached equilibrium through some
dissipative process such as interaction of the condensate
with the thermal cloud [29]; our simulations omitted such
processes.

For an anisotropic trap with ex fi ey , the anomalous
mode va�V� becomes imaginary in the range jvaj 2 d &

V & jvaj 1 d, where 2d � jex 2 eyj [25]. The onset
of metastability in such traps occurs only when V exceeds
jvaj by the appropriate amount, which may help explain
the relevance of Vm * jvaj for the ENS experiments.

In summary, anomalous modes are interpreted as defin-
ing both the vortex precession in the JILA experiments [6]
and the critical frequency for the appearance of the first
vortex in the ENS experiments [5].
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