Comment on "Theory of Diluted Magnetic Semiconductor Ferromagnetism"

In a recent Letter [1], a theory of carrier-induced ferromagnetism in diluted magnetic semiconductors (DMS) is proposed. By using their self-consistent spin-wave (SCSW) approximation, the authors show a nonmonotonic dependence of critical temperatures T_c on the free-carrier density in agreement with experiment. Here we emphasize that their SCSW theory is *a priori* unjustified and will lead to inaccurate results at low temperatures and near T_c . Thus we suggest another SCSW approximation to remedy these flaws.

By taking the Ising limit for the exchange coupling between magnetic ions and itinerant carriers, such that the spin-wave spectrum Ω_p is independent of momentum \vec{p} , one can obtain an expression for the thermal average of the impurity-spin density [1]

$$\langle S^{z} \rangle = \frac{1}{V} \sum_{|\vec{p}| < p_{c}} \{ S - n(\Omega_{p}) + (2S + 1) \\ \times n[(2S + 1)\Omega_{p}] \},$$
 (1)

where $n(\omega)$ is the Bose function and p_c is a Debye cutoff. ($p_c^3 = 6\pi^2 c$, c is the magnetic ion density.) The SCSW approximation used in Ref. [1] consists of extending the above formula (which is derived under the Ising limit) to the isotropic case simply by substituting the Ω_p in the isotropic case (now Ω_p is \vec{p} dependent) into Eq. (1). Thus their theory can be considered phenomenological, and its validity is not guaranteed. For example, as mentioned in Ref. [1], when $T \rightarrow 0$, Eq. (1) does not yield the correct prefactor of the characteristic $T^{3/2}$ law [2]. Moreover, near T_c , where both $\langle S^z \rangle$ and the free-carrier spin density n^* approach zero, one can show that Eq. (1) leads to the following expression for T_c :

$$k_B T_c = \frac{S(S+1)}{3} \lim_{\langle S^z \rangle, n^* \to 0} \frac{1}{V} \sum_{|\vec{p}| < p_c} \frac{\Omega_p}{\langle S^z \rangle}.$$
 (2)

Notice that, although the low-energy spin-wave excitations do exist in the present system, this expression predicts a nonzero T_c , even for the one-dimensional (1D) and two-dimensional (2D) cases. This is incompatible with the Mermin-Wagner theorem [2] and implies that Eq. (1) does not properly capture the whole effect of spin fluctuations. Therefore, for a better SCSW theory, the contribution from spin fluctuations needs to be considered more properly, even though the predicted value of T_c may differ numerically only in the three-dimensional case.

To find another SCSW theory without these flaws, we notice that, after coarse graining as being done in Ref. [1], the Hamiltonian of DMS and the Kondo lattice model (KLM) are approximately equivalent. Therefore, by using the equation-of-motion approach under the Tyablikov decoupling scheme (random-phase-like approximation) [3] and calculating the Green function $\langle \langle S_i^+; (S_j^-)^n (S_i^+)^{n-1} \rangle \rangle$

for the KLM, another expression for $\langle S^z \rangle$ is reached [4,5], which respects the constraints on the finite dimensionality of the impurity-spin Hilbert space,

$$\langle S^{z} \rangle = c \left\{ S - \Phi + \frac{(2S+1)}{[(1+\Phi/\Phi]^{2S+1}-1]} \right\}, \quad (3)$$

where the value of $\langle S^z \rangle$ in the KLM is reduced by a factor of *c* due to coarse graining and $\Phi = (1/cV) \times \sum_{|\vec{p}| < p_c} n(\Omega_p)$. As simple justification of Eq. (3), one can check two limiting cases: (i) when $T \approx 0$, such that $n(\Omega_p)$ and therefore Φ are vanishingly small, the last term in Eq. (3) can be dropped and Eq. (3) does lead to the correct $T^{3/2}$ law; (ii) by taking Ω_p to be \vec{p} independent, Eq. (1) is recovered as it should be. Moreover, the present theory gives another expression for T_c ,

$$k_B T_c = \frac{S(S+1)/3}{\lim_{\langle S^z \rangle, n^* \to 0} (1/V) \sum_{|\vec{p}| < p_c} \langle S^z \rangle / \Omega_p c^2} \,. \tag{4}$$

The above formula gives $T_c = 0$ both for the 1D and 2D cases due to the fact that $\Omega_p \propto p^2$ as $p \to 0$ and therefore the integration over \vec{p} diverges. It shows that the contribution of long-wavelength spin waves is treated more properly in the present method. Thus the emphasis on these low-energy excitations, especially near T_c , implied by using Eqs. (1) and (3) is different. Based on these discussions, we argue that a reasonable SCSW theory should use Eq. (3) for $\langle S^z \rangle$, rather than Eq. (1).

Note added.—After this work was completed, we noticed that an application of this approach on the KLM has been previously studied [5].

Min-Fong Yang,¹ Shih-Jye Sun,² and Ming-Che Chang³ ¹Department of Physics Tunghai University Taichung, Taiwan ²Department of Electronics Yung Ta Institute of Technology and Commerce Pingtung, Taiwan ³Department of Physics National Taiwan Normal University Taipei, Taiwan

Received 7 August 2000

- DOI: 10.1103/PhysRevLett.86.5636 PACS numbers: 75.30.Ds, 75.40.Gb, 75.50.Dd
- J. König, H. H. Lin, and A. H. MacDonald, Phys. Rev. Lett. 84, 5628 (2000).
- [2] For example, see A. Auerbach, *Interacting Electrons and Quantum Magnetism* (Springer, New York, 1994).
- [3] D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp. 3, 320 (1960)].
- [4] R. Tahir-Kheli and D. ter Harr, Phys. Rev. 127, 88 (1962);
 H. B. Callen, Phys. Rev. 130, 890 (1963).
- [5] W. Nolting, S. Rex, and S. Mathi Jaya, J. Phys. Condens. Matter 9, 1301 (1997).