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It is shown that, contrary to widely held beliefs, the potentials of spin-density-functional theory (SDFT)
are not unique functionals of the spin densities. Explicit examples of distinct sets of potentials with the
same ground-state densities are constructed. These findings imply that the zero-temperature exchange-
correlation energy is not always a differentiable functional of the spin density. As a consequence, various
types of applications of SDFT must be critically reexamined.
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The Hohenberg-Kohn (HK) theorem [1], which guaran-
tees that the ground-state single-particle density uniquely
determines all observables of a many-body system, is one
of the most remarkable theorems of quantum mechanics.
It is also at the heart of density-functional theory (DFT),
one of the most popular many-body methods [2,3]. In
the case of the original formulation of DFT, in which the
basic variable is the particle density n�r�, the HK theo-
rem can be cast in the form of two logically independent
one-to-one maps [2]. Quantum mechanics guarantees that,
for a given interaction and particle number, the potential
in which the particles move determines the ground-state
many-body wave function (via solution of Schrödinger’s
equation), which in turn determines the ground-state den-
sity (by simple integration). The essence of the original
HK theorem is that both of these maps are invertible: the
ground-state density n�r� uniquely determines the ground-
state wave function C�r1, . . . , rN �, which in turn deter-
mines, up to an additive constant, the potential [1–4],

y�r�
�1�
()C�r1, . . . , rN �

�2�
() n�r� . (1)

These abstract maps have found extremely important
practical applications in the form of the Kohn-Sham (KS)
formulation of DFT [5], which is used for almost all
band-structure calculations in solid-state physics, and a
rapidly increasing number of electronic-structure calcula-
tions in quantum chemistry. Many of these applications,
however, do not employ the original formulation of DFT,
but spin-density-functional theory (SDFT) [6], in which
the fundamental variables are the spin-resolved particle
densities ns�r�. In SDFT the map from spin densities to
wave functions is easily established, but that from wave
functions to potentials could not, in spite of consider-
able effort [2,6,7] be proven and remains an, albeit popu-
lar, conjecture. In the early days of SDFT, von Barth
and Hedin [6] already pointed out that the uniqueness of
the spin-dependent potentials is not guaranteed, and ex-
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plicitly constructed two potentials which, when used in
a one-body Hamiltonian, have common eigenstates. The
question of whether a similar construction is possible in the
many-body case, however, remained open, and even in the
one-body case it was objected that these common eigen-
states were not necessarily common ground states [2,7].

In this Letter, we settle these questions by first deriv-
ing a general equation [Eq. (2), below] whose solutions
are the nonunique pieces of the potentials. This equation
has two types of solutions, “accidental” ones and solutions
that are connected with a special type of constant of mo-
tion. We then give a number of explicit and very simple
examples for both types of solutions, and interpret the
physics behind nonuniqueness in terms of a certain form of
incompressibility.

The immediate and most important implication of these
findings is that the universal energy functional F (i.e.,
the expectation value of the sum of kinetic and interac-
tion energy in the ground state C) and its noninteracting
counterpart Ts are, generally, nondifferentiable functionals
of the spin density. For, if they were differentiable, then
their functional derivatives, evaluated at the ground-state
densities, would uniquely determine the external and the
KS potentials, respectively [see Eq. (7) below]. It follows
that the exchange-correlation (xc) energy Exc � F 2

Ts 2 EH , where EH is the Hartree energy, is also nondif-
ferentiable (barring a fortuitous cancellation of singulari-
ties), and the xc potential yxc may have discontinuities at
some densities. The existence of discontinuities in yxc
as a function of total particle number has been known for
years as the source of the so-called “band-gap problem”
in semiconductors [8,9]. Here we prove that a similar
problem occurs in SDFT.

To obtain the condition for nonuniqueness let y0 �
y 1 Dy and B0 � B 1 DB be electrostatic and mag-
netic fields that are supposed to give the same (many-
body) ground state C as y and B, and subtract the two
corresponding many-body Schrödinger equations. The
© 2001 The American Physical Society
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result isZ
d3r �n̂�r�Dy�r� 2 m̂�r�DB�r��C � DEC . (2)

A necessary condition for nonuniqueness is thus that, given
C, one can find a linear combination of the density opera-
tors (n̂ and m̂ in the case of SDFT) of which C is an
eigenfunction. This is automatically the case if a linear
combination exists that is a constant of motion, since con-
stants of motion commute with the Hamiltonian and thus
have the same eigenfunctions (assumed nondegenerate for
convenience). If the Hamiltonian expressed in terms of
y and B has a gap between its ground state and its first
excited state, one can always make sure that C remains
ground state of the new Hamiltonian, containing y0 and
B0, by making the coefficients of the linear combination,
Dy and DB, sufficiently small.

From any extensive constant of motion (i.e., one which
is a linear combination of the density operators) one can
thus systematically construct families of potentials with
the same ground state. As a first example consider a sys-
tem with an energy gap, for which the total magnetization
M̂z �

R
d3r m̂z�r� is a constant of motion. The choice

Dy � 0, DB � B̄uz � const, where uz is a unit vector
in the z direction, then is clearly a suitable linear combi-
nation, as long as B̄ is not large enough to induce level
crossings. The presence of a gap is crucially important,
since it guarantees that for sufficiently small values of B̄
such level crossings do not take place, so that C remains
the ground state.

Examples for nonuniqueness obtained from constants
of motion are below referred to as systematic nonunique-
ness [10]. Apart from these, Eq. (2) may, under suitable
circumstances, also permit solutions not systematically
associated with conserved quantities. To construct an
example for such accidental nonuniqueness, first recall
that in conventional SDFT the spin densities ns�r� �PNs

n f�
ns�r�fns�r� are calculated from the solutions of

the spin-dependent KS equation,∑
2

h̄2

2m
=2 1 ys,s�r�

∏
fns�r� � ensfns�r� , (3)

where Ns , the number of particles with spin s, is deter-
mined by filling the N lowest eigenfunctions fns in se-
quential order. Here we restricted ourselves to collinear
spin configurations, so that the magnetic field can be writ-
ten as Bs,z � �ys,# 2 ys,"��2m, where m � qh̄��2mc� is
the Bohr magneton. If the number of filled spin up levels
is equal to that of filled spin down levels, the system is
unpolarized (N" � N#), while it acquires a finite spin po-
larization if they are different. The maximum possible spin
polarization is realized if all particles have the same spin
(say spin up), so that n" � n and n# � 0.

In the case of a fully polarized system (e.g., saturated
ferromagnetism), the N lowest eigenvalues of the spin up
KS equation are all lower than the lowest eigenvalue of
the spin down KS equation, so that no eigenfunction of
the latter is occupied. The full density is thus obtained
from the self-consistent solution of∑

2
h̄2

2m
=2 1 ys,"�r�

∏
fn"�r� � en"fn"�r� , (4)

with n�r� � n"�r� �
PN

n f
�
n"�r�fn"�r�. In this case the

spin up KS potential of SDFT already determines the full
particle density n�r�. The spin down potential, on the other
hand, is a completely arbitrary function of r, as long as its
lowest eigenvalue e0# is higher than the N th eigenvalue
of the corresponding spin up equation, eN" (which is pre-
cisely the condition for the system to remain fully polar-
ized) [11]. The set of spin densities �n" � n, n# � 0� thus
does not uniquely determine the set of potentials �ys", ys#�,
because there trivially is an infinite number of possible spin
down potentials. Since spin densities and wave functions
are still in one-to-one correspondence, this implies that the
potentials of SDFT are not determined completely by ei-
ther the KS Slater determinant F or the full many-body
ground state C.

In the less extreme case of a partially polarized system
this simple example for accidental nonuniqueness breaks
down, but it is not hard to show that partial polarization
does not restore uniqueness. Consider thus, as our next
example, a given representation of the ground state KS
Slater determinant in terms of single-particle orbitals fn.
In ordinary DFT, based on the density only, each of these
orbitals determines the corresponding KS potential (up to
the irrelevant additive constant en which determines the
zero of energy) according to

ys�r� � en 2
t̂fn�r�
fn�r�

, (5)

where t̂ is the single-particle kinetic energy operator.
Equation (5) is simply the KS equation solved for ys�r�
[12]. If one now tries to repeat this reasoning in the
spin-dependent case, one must solve the KS equation of
SDFT for the external potentials ys,"�r� and ys,#�r� in
terms of the single-particle orbitals fn"�r� and fn#�r�,

ys,s�r� � ens 2
t̂fns�r�
fns�r�

. (6)

Again, any of the single-particle orbitals determines the
corresponding potential up to a constant, ens , which re-
mains unspecified. But, unlike in the previous case, one
can choose only one constant freely by adjusting the zero
of energy. That is, given fn"�r�, say, one can completely
determine ys,"�r� by fixing the zero of energy, but then
fn#�r� determines ys,#�r� only up to an unknown constant.
Although this constant is physically relevant since it rigidly
shifts spin up levels with respect to spin down levels, it is
manifestly not knowable in terms of only the orbitals. Con-
sequently, the KS Slater determinant does not completely
determine the spin-dependent potentials. By appealing to
the second part of the HK theorem one readily concludes
that the same holds for the many-body wave function C.
The only caveat to the above construction is that for the
5547



VOLUME 86, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 JUNE 2001
original KS determinant to remain the ground state after
adding the free constant to ys,#, this shift must not in-
duce the presence of new (previously unoccupied) single-
particle orbitals in the Slater determinant. As above, this is
guaranteed if the KS N-particle ground state is separated
from the first excited state by a gap, and the shift of ys,# is
sufficiently small compared to this gap.

Adding a constant term, ȳ, to ys,#�r� amounts to adding
ȳ�2 to the electrostatic potential ys�r� and ȳ�2m to the
magnetic field Bs,z�r�. The nonuniqueness associated with
the fact that there is only one zero of energy, but two
constants to be determined in Eq. (6), has thus brought
us back to a particular example of systematic nonunique-
ness, in which the linear combination in Eq. (2) is given
by Dy � ȳ�2 and DB � �ȳ��2m��uz . In general, we
expect that systematic nonuniqueness is the only generic
source of nonuniqueness, while accidental nonuniqueness
requires certain “pathological” features, such as complete
spin polarization.

Reflecting on the previous examples, what all cases of
nonuniqueness, accidental or systematic, have in common
is that the wave functions do not change if certain changes
are made to the potentials. This implies a degree of “rigid-
ity” or “incompressibility” of the former with respect to
the latter. The relation to incompressibility is, in fact, more
than a mere analogy: an essential feature of all nontrivial
examples of nonuniqueness (i.e., all except the one men-
tioned in footnote [10]) is a gap between ground and first
excited state, as a consequence of which sufficiently small
changes to the potentials cannot bring down an excited
state to have lower energy than the ground state. The ex-
istence of a gap between ground and first excited state, on
the other hand, is tantamount to incompressibility in the
usual (quantum liquid) sense of the word.

Another way to look at the above findings is to recall
that the KS potentials can be expressed as

ys,s�r� 2 m � 2
dTs�n", n#�

dns�r�
, (7)

where m is the chemical potential and Ts the noninteracting
kinetic energy functional of Refs. [5] and [6]. Nonunique-
ness of ys,s implies that Ts does not possess a functional
derivative for all spin densities. This result could have been
anticipated from the Oliver-Perdew [13] spin-scaling re-
lation Ts�n", n#� � �Ts�2n"� 1 Ts�2n#���2, which connects
the Ts functional of SDFT, Ts�n", n#�, to that of ordinary
DFT, Ts�n�. Changing the spin density at constant particle
density means that at least one spin must be flipped: this
changes the total particle numbers N" and N#, causing the
DFT functionals on the right-hand side of the relation to
be affected by their well-known derivative discontinuities.
An obvious extension of Eq. (7), with ys and Ts�n", n#�
replaced by the external potential and F�n", n#�, respec-
tively, proves that nonuniqueness implies nondifferentia-
bility of F, too. From this we conclude that the xc
potential yxc,s�r� � d�F 2 Ts 2 EH��dns�r� is gener-
ally a discontinuous functional of the spin density.
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The above conclusions have been reached within the
frame of the zero-temperature (ground-state) formalism,
with integral occupations of the KS orbitals. It is natural,
at this point, to ask whether all these difficulties could be
avoided by going to finite temperature or fractional orbital
occupation [8] ensembles. As in the analogous band-gap
problem we believe that there is no easy way to fix the
problem. For example, it is true that in the finite tem-
perature formalism the thermodynamic xc potential be-
comes a differentiable function of particle number, due to
the finite fractional occupation of states above a band gap
[14]. But this means only that the T � 0 discontinuity is
spread over a finite (infinitesimal for T ! 0) range of frac-
tional particle numbers. As long as kBT is much smaller
than the gap, the quantity of physical interest remains the
total change of yxc across that range, which is essentially
the same as the T � 0 discontinuity, and is, unfortunately,
unknown.

In the remainder of this paper we briefly describe
several situations which are directly affected by the
nonuniqueness of the potentials: (i) calculation of excited
states within SDFT, (ii) determination of exact KS poten-
tials from numerically exact densities, (iii) perturbative
strategies to construct approximate density functionals,
(iv) calculations of one-electron spin gaps in half-metallic
ferromagnets, and (v) the optimized-effective potential
method of SDFT.

(i) It is sometimes stated [2,3] that the ground-state
density of DFT in principle contains all information about
excited states, too, since it determines the external poten-
tial, which in turn determines the entire energy spectrum.
From the above it is clear that this statement does not hold
in SDFT in the presence of a magnetic field, since the
spin densities do not fully determine the external poten-
tials y�r� and B�r�.

(ii) Recently several methods for constructing accurate
KS potentials, using as input highly precise numerical den-
sities (obtained from Monte Carlo or configuration inter-
action calculations), have been proposed [15]. Uniqueness
of the resulting KS potentials is taken for granted in these
prescriptions. Clearly, this holds only in the original for-
mulation of DFT, but not in the (much more widely used)
SDFT. The generalization of these methods to determine
the KS potentials of SDFT must thus be reconsidered.

(iii) A useful method for obtaining LDA-type approxi-
mations for the xc functional is based on perturbative dia-
grammatic calculations of the xc energy of the electron
gas [2,16]. The results of such calculations are necessarily
obtained in terms of the potentials acting on the unper-
turbed system. As long as the first map of the HK theorem
holds, they are thus automatically also functionals of the
densities. Obviously this ceases to be true if that map is
no longer available. It follows from the above that the
SDFT counterpart of this procedure works only because
the electron gas does not have a gap between its ground
and first excited state. Attempts to apply this procedure to
systems with a gap (such as the superconducting electron
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gas considered in Ref. [16]) thus face unanticipated and
fundamental problems.

(iv) Half-metallic ferromagnets have only electrons of
one spin orientation at the Fermi level, while electrons of
the opposite spin orientation are in a full valence band be-
low the Fermi level. An important quantity is the “spin
gap,” i.e., the energy required to flip a minority spin elec-
tron from the top of the occupied valence band to the Fermi
level of majority spins. In principle, this quantity could be
calculated from SDFT because it is the difference between
the energies of two ground states with different values of
Sz . However, in view of our findings (see, in particular,
our third example above), it is very likely that any SDFT
calculation of the spin gap will miss a contribution due to
a discontinuity in the exchange-correlation potential.

(v) In the optimized-effective potential method one
minimizes an energy functional that is an explicit func-
tional of the single-particle orbitals and only an implicit
functional of the densities. In order to calculate the
functional derivative with respect to the densities, one
then employs the functional chain rule to write [17,18]

yxc�n� �r� �
dExc��fn��

dn�r�

�
Z

dr 0
Z

dr 00
X
n

dExc��fn��
dfn�r0�

3
dfn�r0�
dys�r00�

dys�r00�
dn�r�

1 c.c. (8)

The first functional derivative on the right-hand side can be
calculated explicitly, the second is easily found from per-
turbation theory, and the last is usually identified with an
inverse response function. However, if the KS potentials
are not unique, this inverse does not exist for all densities.
In practice one does not explicitly calculate the derivative
dys�r00��dn�r�, but expresses it in terms of the noninter-
acting response function. For this procedure to work in
SDFT and to uniquely determine yxc,s�r�, one must sup-
plement it by additional information on ys,s�r�, to elimi-
nate its nonuniqueness. The relative additive constant
discussed below Eq. (6), for example, can be fixed by con-
sidering the proper decay of the KS potentials as r ! `,
for a finite system.

Our conclusions (i) to (v) above were formulated ex-
plicitly for SDFT, but nonuniqueness is not limited to that
formulation of DFT. In fact, similar examples for
nonuniqueness have recently also been found by one of us
in current-density functional theory [19].

In summary, we have shown, both by explicit examples
and by general considerations, that, unlike in ordinary
DFT, the effective and external potentials of SDFT are
not uniquely determined by the spin densities alone.
Nonuniqueness can arise accidentally, via special features
of the ground state, and systematically, via extensive
constants of motion. As a consequence many previous
applications of SDFT must be critically reexamined.
Similar conclusions have recently and independently been
reached by Eschrig and Pickett [20].
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