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Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy
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We present a method to compute accurately the weak anisotropy of the solid-liquid interfacial free
energy, a parameter which influences dendritic evolution in materials with atomically rough interfaces.
The method is based on monitoring interfacial fluctuations during molecular dynamics simulation and
extracting the interfacial stiffness which is an order of magnitude more anisotropic than the interfacial
free energy. We present results for pure Ni with interatomic potentials derived from the embedded atom
method.

DOI: 10.1103/PhysRevLett.86.5530 PACS numbers: 68.08.–p, 64.70.Dv, 81.30.Fb
The formation of dendrites during the solidification of a
liquid is an important process from both technological and
scientific points of view [1]. The mechanical integrity of
a cast, brazed, or soldered alloy depends critically on the
complex morphologies which appear during solidification.
In addition, dendrite formation represents a rather striking
example of spontaneous pattern formation in a nonequilib-
rium system, a phenomenon studied extensively in many
areas of physics, chemistry, and biology.

Numerous studies over the last two decades have con-
vincingly demonstrated that crystalline anisotropy plays a
crucial role in dendritic solidification [1]. Dynamically,
its main role is to prevent the growing tips of primary
and higher order dendrite branches from splitting continu-
ously, thereby guiding morphological development into a
branched pattern that reflects on a macroscopic scale the
underlying atomic symmetry of the crystal. Moreover, the
dendrite growth rate depends sensitively on the strength of
crystalline anisotropy as predicted by microscopic solv-
ability theory [2] and recently validated by phase-field
simulations in three dimensions [3]. Despite this progress,
closure between theory and experiment has remained a ma-
jor problem. A main obstacle is that the anisotropy of
the solid-liquid interfacial energy is characteristically very
weak for dendrite forming systems with low entropy of
melting and atomically rough interfaces. Thus, the pre-
cise value of this key parameter controlling microstructural
evolution has so far remained too difficult to compute or
measure experimentally for metallic systems of practical
relevance, and existing anisotropy measurements remain
limited to a few transparent organic systems [4].

The purpose of this Letter is to describe a computational
method that can predict accurately the weak anisotropy of
the interfacial free energy with the level of accuracy needed
to model accurately microstructural evolution in solidifi-
cation and other pattern forming systems. The method is
presented here for the concrete example of the crystal-melt
interface in pure Ni where the interatomic potential is mod-
eled using the embedded atom method (EAM) [5,6]. How-
ever, it should also be applicable to compute the excess
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free energy of the interface between various liquid crys-
talline phases, and notably the nematic-isotropic interface
[7]. Moreover, this method provides an accurate predic-
tion of the interfacial free energy even when the latter is
isotropic, which is directly relevant for a wide range of
hydrodynamic problems. We summarize here the essen-
tial ingredients of the method and a more detailed exten-
sion to compute interfacial kinetic properties will be given
elsewhere.

For weakly anisotropic crystals with an underlying cubic
symmetry, the anisotropy parameter has been traditionally
defined [2,3] by examining the variation of the interfacial
energy, g, with the angle u between the �100� direction
and the direction normal to the interface that lies in the
(001) plane, or to lowest order

g�u� � g0�1 1 e cos4u 1 . . .� , (1)

where e is typically small (�0.01). For the transparent
organic crystals used in fundamental studies of dendritic
growth, it has been possible to measure e [4] by imaging
the two-dimensional (2D) projection of the 3D equilibrium
crystal shape along the �001� direction. In an atomistic
simulation, however, such a measurement is not feasible
because the shape fluctuations of a small crystal are too
large, even with a million atoms. Another possibility is
to compute g for a flat interface for different orientations.
However, the uncertainty in g for each orientation must
be much smaller than e, a task that would require unrea-
sonably long averaging times in simulations. For example,
Broughton and Gilmer [8] computed the crystal-melt in-
terfacial energy in a Lennard-Jones system using molecu-
lar dynamics (MD) and quoted a 7% uncertainty in g

which is too high to extract e. Analytic descriptions of the
crystal-melt interface based on density functional theory
[9] offer the possibility of computing g [10]. However,
such theoretical approaches have been limited thus far to
simple hard and soft sphere systems.

We circumvent the above difficulties by computing, in-
stead of g, the interfacial stiffness, g 1 g00, where we
© 2001 The American Physical Society
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have defined g00 � d2g�du2. The key point is that this
quantity, which enters directly the Gibbs-Thomson condi-
tion of standard solidification models, is an order of mag-
nitude more anisotropic than g itself, i.e., for g given
by Eq. (1), g 1 g00 � g0�1 2 a cos4u�, with a � 15e.
Thus, in general, the stiffness anisotropy is much easier
to compute accurately by MD simulations than the corre-
sponding one for g, and the two anisotropies can always be
related. This remains true even for higher order forms of g

than Eq. (1), as we see below. To obtain the stiffness for a
given orientation, we use the known fact that this quantity
can be related to the spectrum of interfacial fluctuations in
thermodynamic equilibrium [11]. To see how this relation-
ship comes about in the form appropriate for our simula-
tions, consider a thin slab that is infinite along the vertical
y axis, of width W along the x axis, and of thickness
b ø W along the z axis. Furthermore, let h�x� denote the
height (y coordinate) of the fluctuating ribbonlike interface
that separates the solid and liquid phases in this slab. We
focus on this geometry because it gives rise to larger am-
plitude fluctuations than a bulk 3D system containing a 2D
square interface. Namely, the mean square height of the
interface, �h2	, scales proportionally to W in the former,
but only as lnW in the latter [12]. For the slab, the rib-
bonlike interface shape can be written as a sum of Fourier
modes: h�x� �

P
k A�k� exp�ikx�. A relation between the

interface stiffness and the mean square amplitude �jA�k�j2	
can then be obtained by noting that the mean energy, Ek , in
each Fourier mode must be equal to kBTM (i.e., 2 degrees
of freedom per mode corresponding to sin�kx� and cos�kx�,
where kB is the Boltzmann constant and TM is the equi-
librium melting temperature) which follows from equipar-
tition of energy. Using the expression for the interfacial
energy, b

R
ds g�u�, where ds 
 1 1 �dh�dx�2�2 is the

element of arclength along the ribbon and u 
 dh�dx is
the angle between the interface normal and the y axis, we
obtain at once the desired relation

�jA�k�j2	 �
kBTM

bW �g 1 g00�k2 , (2)

which allows us to extract the stiffness from our MD
simulations, i.e., by measuring the slope of the straight
line that fits 1��jA�k�j2	 plotted vs k2. Note that g00 in the
denominator of Eq. (2) originates from the energy cost of
bending locally the interface away from its macroscopic
orientation, which is why the fluctuation spectrum mea-
sures directly the stiffness.

The next question that needs to be addressed is how
many independent stiffness measurements (for different
orientations) are needed to parametrize g? Let us de-
note by x̂1, x̂2, and x̂3 the unit vectors parallel to the
�100�, �010�, and �001� directions, respectively, and by ni

�i [ �1, 3�� the components of the interface normal, n̂, in
the (x1, x2, x3) coordinate system. For a weakly anisotropic
crystal, g�n̂� can be expanded in terms of “Kubic harmon-
ics” [13], which is a linear combination of spherical har-
monics that obey a cubic symmetry:

g�n̂��go � 1 2 3e 1 4e
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Consider a simulation in which the 100 face of the crys-
tal is adjacent to the liquid phase and the �010� direction
runs parallel to the 1D interface. For brevity of notation,
we denote this orientation by 100 �010�. [The coordi-
nate system for this orientation is illustrated in Fig. 1(b).]
This corresponds, equivalently, to the choice of unit vec-
tors x̂ � x̂2 and ŷ � x̂1, where recall that x̂ is parallel
to the 1D interface and ŷ is normal to the crystal face.
Similarly, for 110 �11̄0�, we have x̂ � �x̂1 2 x̂2��

p
2 and

ŷ � �x̂1 1 x̂2��
p

2, and so forth for other orientations.
Since the interface fluctuates in the �x, y� plane and u is
the angle between n̂ and ŷ, the stiffness for a given choice
of slab orientation (x̂, ŷ) is simply obtained by substituting
the expression ni � �cosuŷ 1 sinux̂� ? x̂i into Eq. (3) for
i [ �1, 3�, in which case g becomes only a function of u.
The stiffness is then g 1 d2g�du2 evaluated at u � 0.
Results of this procedure are reported for five different
orientations in the middle column of Table I. For d � 0,

0.0 100.0 200.0 300.0 400.0 500.0
y Position  (A)

0.0

0.5

1.0

1.5

φ  

(a)

[100]

[010]

(b)

FIG. 1. (a) Plot of the order parameter f vs y at a point along
the interface. Results were obtained from a single configuration
during an MD simulation. (b) Portion of the solid-liquid inter-
face obtained from one snapshot of an MD simulation for the
100 �010� orientation (the thin direction, i.e., 001, points into
the page). Atoms are shaded based on the value of the order
parameter f defined in the text. Superimposed as a thick line is
the interface position corresponding to the f 
 0.7 contour.
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TABLE I. Stiffness for different orientations computed ana-
lytically using Eq. (3) (middle column) and by linear fits of
1��jA�k�j2	bW vs k2 in MD simulations (right column).

Orientation �g 1 g00��g0 g 1 g00 �mJ�m2�

100 �010� 1 2 15e 2 5d 234
110 �11̄0� 1 1 15e 1 �25�4�d 413
110 �001� 1 1 9e 1 �55�4�d 207
100 �012� 1 1 �387�25�e 1 �114�25�d 192
110 �11̄2� 1 1 e 1 �45�4�d 277

Eq. (3) reduces to the lowest order form of anisotropy used
in theoretical studies of dendritic growth to date, and to
Eq. (1) in a 2D cross section. For this choice, only two
independent stiffness measurements are needed to deter-
mine g0 and e independently. We first determined these
two quantities in Ni by using the two stiffness measure-
ments reported in the first two rows of Table I, but found
that the measured stiffness of the third row could not be
fitted accurately. Consequently, we determined g0, e, and
d, from the stiffness measurements of the first three rows,
and then checked that the stiffness of rows 4 and 5 were
accurately reproduced. In general, as many independent
stiffness measurements are needed as independent parame-
ters in the cubic harmonic expansion of Eq. (3), plus a few
more to check convergence.

Let us now briefly describe the MD simulations and the
results. Interatomic potentials for Ni were modeled with
the embedded atom method. The EAM is a semiempirical
technique which includes multibody atomic interations [5]
and which has been proven to be very successful in repro-
ducing various structural, thermodynamic, and dynamic
properties of late transition and noble metals [6]. Here,
the Ni potential originally developed by Foiles, Baskes,
and Daw [14] has been employed and other versions of
the EAM Ni potential will be investigated elsewhere. MD
simulations were performed in the thin slab geometry in-
troduced above, with periodic boundary conditions on all
sides. The slab width W was chosen on the order of
250 Å, with W varying somewhat with crystal orientation.
Because of the periodic boundary conditions, two solid-
liquid interfaces perpendicular to the y direction are con-
tained in each slab. Therefore, in order to avoid entropic
interactions between the two interfaces as much as pos-
sible, the slab height along the y direction was chosen
to be 2W . Finally, the slab thickness along the z direc-
tion was taken to be as small as possible, yet greater than
the range of interaction of the EAM potential (e.g., three
unit cells for z � �001�). A typical simulation contained
100 000–150 000 atoms. MD runs were carried out in the
microcanonical ensemble, and separate runs at constant T
and P yielded identical fluctuation spectra �jA�k�j2	. The
equations of motion were solved with a time step of 2 fs
and equilibration of the solid-liquid system at the melt-
ing point required 60 ps runs. Subsequently, snapshots of
the interface position were collected every 100 time steps
5532
for a total of 1250 configurations (125 ps). Locating the
position of the solid-liquid interface requires a means of
labeling an atom in the simulation as belonging to either
the liquid or solid phase. Although several schemes have
been developed for this purpose [15–17], we have found
the most accurate to be the following. For any of the 12
nearest neighbors of a given atom one can compute the dis-
tance the neighbor makes from the ideal fcc positions of the
crystal in the given orientation (denoted by �rfcc), which just
requires a knowledge of the lattice parameter at the melting
temperature and the crystal orientation. The sum of the dis-
tances over the 12 neighbors, f �

1
12

P
i j�ri 2 �rfccj

2, acts
as an “order parameter” for the central atom. The x direc-
tion in the simulation cell is divided into several slices and
the order parameter averaged over the slice is computed as
a function of the distance y. As the solid-liquid interface is
traversed, f changes very abruptly as shown in Fig. 1(a),
such that the interface can be accurately located as illus-
trated in Fig. 1(b). Specifically, the interface was found by
the contour defined by f � 0.7.

Figure 2 shows the fluctuation spectra, �jA�k�j2	 vs k,
on a log-log scale for the first three orientations in Table I.
Standard deviations for the quantity �jA�k�j2	 were found
to be on the order of the size of the data points in Fig. 2.
The solid lines in the figure represent slopes of 22, con-
sistent with the prediction of Eq. (2). It is clear that over
a wide range of k, the correct wave number dependence is
observed. For all orientations, we observe a leveling off
at small k which is most likely due to the aforementioned
entropic repulsion between the two solid-liquid interfaces.
The fact that the three curves of Fig. 2 are offset from one
another is a direct consequence of the stiffness anisotropy.

The anisotropy can be more easily seen in Fig. 3 that
plots the reciprocal of the fluctuation spectra times bW vs
k2. According to Eq. (2), the slope of the lines in Fig. 3
is proportional to the stiffness for the stated orientation.
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FIG. 2. Log-log plot of the fluctuation spectra, �jA�k�j2	 vs k,
for pure Ni in three crystal orientations. The solid lines indicate
a slope of k22.
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FIG. 3. 1��jA�k�j2	bW vs k2 for three crystal orientations. The
slope of the lines is proportional to the solid-liquid interface
stiffness and a clear anisotropy is observed. Also shown are
results for different size simulation cells for the 100 interface
(see text).

Also shown in the figure is an examination of the system
size dependence of the simulations. The 100 run labeled
T refers to a simulation cell which is 25% thicker (four
unit cells in the z direction rather than three) and the run
denoted L corresponds to a simulation in which the slab
width was 50% larger. The overlap of all three 100 data
sets confirms that the simulations are converged with re-
spect to the slab dimension. The least squares fits of the
100 �010�, 110 �11̄0�, and 110 �001� fluctuation data yield
the stiffness values reported in the first three rows of the
right column in Table I, which by comparison with the ana-
lytical expressions of the middle column uniquely sets
go � 325.88 mJ�m2, e � 0.022 69, and d � 20.011 68.
Using these values, the analytically predicted values of the
stiffness for the 100 �012� and 110 �11̄2� directions (bot-
tom two rows of middle column of Table I) are then 194
and 276 (in mJ�m2). These values are in good agreement
with the values extracted from the MD simulations (bottom
two rows of right column of Table I), which indicates that
the anisotropy form of Eq. (3) can reproduce fairly accu-
rately the interfacial free energy for any given orientation.
A comparison of the isotropic part of this energy (g0) with
various empirical estimates will be given elsewhere.

In summary, the very small anisotropy in the solid-
liquid interfacial free energy can be found by monitoring
the fluctuations of the interface position during molecular
dynamics simulations. The success of the technique stems
from the fact that it is the stiffness, not the interfacial en-
ergy alone, that controls the fluctuation spectra and the
stiffness can vary significantly as a function of orientation.
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Note added in proof.—During preparation of this manu-
script we became aware of the computations of the solid-
liquid interfacial free energy in the hard sphere system
using a cleaving technique [18].
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