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Microscopic Theory of Heterogeneity and Nonexponential Relaxations in Supercooled Liquids
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Recent experiments show that supercooled liquids around the glass transition temperature are “dynami-
cally heterogeneous” [H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)]. Such heterogeneity is expected
from the random first order transition theory of the glass transition. Using a microscopic approach based
on this theory, we derive a relation between the departure from Debye relaxation as characterized by the
b value of a stretched exponential response function, f�t� � e2�t�tKWW�b , and the fragility of the liquid.
The b value is also predicted to depend on temperature and to vanish as the ideal glass transition is
approached at the Kauzmann temperature.
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The striking universality of relaxation dynamics in su-
percooled liquids has remained intriguing for decades. In
addition to the overall dramatic slowing of transport as the
glass transition is approached, one finds the emergence of
a strongly nonexponential approach to equilibrium when
a supercooled liquid is perturbed [1]. This contrasts with
the behavior of chemically simple liquids at higher tem-
peratures, where only a single time scale for a highly ex-
ponential structural relaxation is usually encountered for
times beyond the vibrational time scales. Both the range
of time scales and the typical magnitude of the relaxation
time require explanation.

Several theoretical threads lead to the notion that the
universal behavior of supercooled liquids arises from
proximity to an underlying random first order transition
[2–6] which is found in mean field theories of spin glass
without reflection symmetry [7–9], and in mode coupling
[10,11] and density functional [12–14] approaches to
the structural glass transition. This picture explains both
the breakdown of simple collisional theories of transport
that apply to high temperature liquids at a characteristic
temperature TA and the impending entropy crisis of super-
cooled liquids first discovered by Simon and brilliantly
emphasized by Kauzmann [15] at the temperature TK .
Furthermore the scenario suggests that the finite range
of the underlying forces modifies mean field behavior
between TA and TK in a way that leads to an intricate
“mosaic” structure of a glassy fluid in which mesoscopic
local regions are each in an aperiodic minimum but are
separated by more mobile domain walls which are strained
and quite far from local minima structures, as shown in
Fig. 1 [16]. Relaxation of the elements of the mosaic,
reconfiguring to other low energy structures, leads to the
slow relaxation, and a scaling treatment of the most proba-
ble relaxation time yields the venerable Vogel-Fulcher law,
t � t0eDT0�T2T0 [5]. D, called the fragility, determines
the apparent size of deviations from an Arrhenius law.
Most recently a microscopic calculation of the coefficient
D yielded good agreement with experiments for a range
of liquids [17]. In this paper, we address the predictions of
the mosaic picture for the dispersion of relaxation times.
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Relaxation in supercooled liquids is well approximated
by the stretched exponential or Kohlrausch-Williams-Watts
(KWW) formula f�t� � e2�t�tKWW�b

. A study conducted
by Böhmer et al. [18] on over sixty glass formers at about
Tg shows b and D are strongly correlated. The smallest
b is found for the most fragile liquids. The heterogeneity
of time scales suggests possible heterogeneity in space.

The existence of spatial heterogeneity received support
from recent computer simulations [19–21], although these
are at temperatures near TA where the clusters are small,

FIG. 1. An illustration of the “mosaic structure” of super-
cooled liquids. The mosaic pieces are not necessarily the same
size due to the fluctuations in the driving force, configurational
entropy. The system escapes from a local metastable configura-
tion by an activated process equivalent to forming a liquidlike
droplet inside a mosaic element. For droplets with size much
smaller than the mosaic (as shown with the small circle), the
droplet shape and its surface energy cost are well described by
the infinite system result [Eq. (2)]. For transition state droplets
that would seem larger than the typical mosaic elements (as
shown with the large circle), the surface energy cost will be
much smaller than sr2 since the formation of such a droplet
will break through boundaries of the preexisting domain. In this
case, the free energy barrier to form such a large droplet will
be close to DF0, the most probable barrier determined by the
macroscopic configurational entropy density.
© 2001 The American Physical Society
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and laboratory experiments, especially direct measure-
ments using 4D NMR [22], noncontact scanning probe
microscopy [23], and optical hole burning [24] techniques.
In the mosaic picture, different regions of the supercooled
liquid will relax in different ways depending on how stable
the local structure is, but, for time scales much longer than
the most probable, the system will behave homogeneously
since the neighboring elements of a mosaic cell will
likely also have reconfigured. In this picture, despite the
presence of some dynamical averaging, the response
function can be viewed to a good approximation as arising
from a relaxation time distribution P�t�

f�t� �
Z

e2t�tP�t� dt . (1)

This will resemble a KWW formula with the b parameter
determined by the explicit form of P�t�, largely by the
breadth of the distribution.

According to the random first order transition theory
[2,4,5,17] in supercooled liquids the relaxation of an in-
dividual mosaic element is an activated process. The driv-
ing force for any local region to escape from one of the
metastable states predicted by a mean field free energy
functional is the configurational entropy of the other states
to which it might hop. Working against this is a cost due
to surface energy since the domain wall is not in a low free
energy configuration. Creating a droplet costs free energy
that depends on the radius of the droplet. Much as in con-
ventional nucleation, one finds

F�r� � 2
4
3pTscr3 1 4ps�r�r2. (2)

Here sc is the configurational entropy density which drives
the random first order transition. A novel feature is that the
multiplicity of states leads to a renormalization of surface
tension, s�r� � s0� r0

r �1�2 [17], where r0 is the interpar-
ticle spacing. The effective decrease in surface tension
for large droplets is due to a wettinglike effect on the in-
terface from the presence of other multiple minima. The
typical free energy barrier is determined by the maximum
of Eq. (2) as a function of r , giving
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since sc � Dc̃p�T � T2TK

TK
, where Dc̃p�T � is the specific

heat jump per unit volume at the transition. The micro-
scopic theory of s0 gives [17]

D �
27
16

p
nkB

Dc̃p
ln2 aLr2

0

pe
, (4)

where aL is the square inverse of the Lindemann ratio of
the maximum vibrational displacement around an aperi-
odic minimum which is globally stable, aLr2

0 � 100. The
resulting formula for the fragility, D � 32R�Dcp , fits ex-
perimental results for a wide range of substances quite well
without adjustable parameters. (Dcp is heat capacity jump
per mole and R is the gas constant.) The typical droplet
size in the mosaic corresponding to the relaxation barrier
turns out to be

rz �

√
2

3p ln aLr2
0

pe

!2�3√
DTK

T 2 TK

!2�3

r0 . (5)

At Tg, this formula for rz gives a correlation length about
5 molecular radii (or a few nanometers) [17], which is con-
sistent with the experimental findings [22] but much larger
than the regions envisioned in the Adam-Gibbs approach
[25]. The configuration of the supercooled liquid is sepa-
rated into domains with average size r� � 1.6rz which
signals where the free energy, Eq. (2), vanishes. Accord-
ing to the microscopic theory both rz and r� (in the units
of molecular distance) are nearly universal functions of the
relaxation time at which the response occurs [17]. This
is because the Lindemann ratio is nearly universal for a
wide range of substances. Each domain corresponds to a
minimum of the free energy functional, but these domains
would vary somewhat in size since there are many differ-
ent local minimum states. They will be separated by thin
mobile sections. The fluctuation of energy of each state
can also be said to reflect the idea that the configurational
entropy (at fixed energy) itself fluctuates according to the
usual Landau formula [26]

dsc �
p

kBDc̃p�Vz , (6)

where Vz �
4
3prz3 is the volume of the average domain.

The fluctuation in configuration entropy, the driving force,
results in a corresponding variation in free energy barriers
for each mosaic element and therefore gives a distribution
of relaxation times.

To find the b value, we must construct an explicit distri-
bution of free energy barriers based on such dynamically
fluctuating mosaic structure. To set the stage, let us first
see what happens if we were to assume the distribution
of relaxation times to be Gaussian resulting from small
fluctuations. This calculation parallels one carried out by
Ediger to infer the domain size in supercooled liquids [27].
This approximation already yields a qualitatively (but not
a quantitatively) correct correlation of b with D. The time
correlation function can be rewritten as

f�t� �
Z

e2t�t�DF�P�DF� dDF . (7)

Here t�DF� � t0eDF�kBT . If P�DF� is Gausssian, the
relaxation function is not precisely a stretched exponential
but is well fitted by one with a b value given by [28,29]

b � �1 1 �dDF�kBT�2�21�2, (8)

where dDF is the width of the Gaussian distribution
P�DF� �

1
p

2pdDF2 e
2�DF2DF0�2�2dDF2

. By using Eqs. (3)–

(6), we find dDF
DF0

� dsc

�sc� �
1

2
p

D
. Therefore we have

b �

∑
1 1

µ
DF0�T�

2kBT
p

D

∂2∏
21�2

. (9)
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This formula would be applicable for a range of substances
again because of the universal nature of the correlation vol-
ume at a given time scale predicted by the microscopic
theory of fragility [17]. The typical barrier height at Tg,
as conventionally defined with a relaxation time of 102 s
corresponds to DF0 � 37kBTg, thus this estimate gives for

b at the laboratory glass transition temperature bG �
p

D
18.5 .

The result is also shown on Fig. 2 as a dashed line. The
data in the graph are the b values measured at Tg for a wide
variety of substances. We see that this formula suggests
correctly that more fragile liquids have smaller b values
near their glass transition. Also we see that, as the tempera-
ture is lowered, the most probable barrier height DF0�T �
increases rapidly, giving a smaller value of b, ultimately
vanishing at TK if available time permitted measurement
and equilibration at such a low temperature. Such a tem-
perature dependence was found in the detailed experimen-
tal study for o-terphenyl by Dixon and Nagel [30]. While
it seems that experiment agrees that b approaches zero at
about TK , consistent with Eq. (9), some theories do not
give such a relation. Free volume theory gives a lower
limit of b � 2

3 , for example, in [31], a value that has been
surpassed in experiments [30].

Although Eq. (9) gives the right trend of b 2 D cor-
relation, it is not quantitatively accurate. A more care-
ful analysis of the implications of the mosaic structure is
needed. The mosaic structure of the random first order
transition theory implies the existence of a large correction
to the Gaussian result since the fluctuations in DF scale in
the same way as DF0. They are thus of a similar magnitude
since rz is of the same size as r�. We shall now show that
a reasonably realistic distribution easily comes out from a
simple model of the dynamic mosaic structure of super-
cooled liquids. First, it is clear that even if the distribution
of configurational entropy were precisely Gaussian, the
free energy barrier distribution would not be. We should
use P�DF�dDF � P�sc�dsc to get the precise distribu-
tion. Second, domains will not all be of equal size, instead,
there is a distribution of size determined again by fluctu-
ations in configurational entropy as we have rz 	 � 1

sc
�1.5.

Most important, when a certain domain with small size
r 0 already exists, the free energy barrier for overturning
that domain will be smaller than Eq. (3) predicts since this
equation assumes spherical transition state droplets. This
activated droplet will be modified because of the preexist-
ing boundaries. When the fluctuating size within the spheri-
cal droplet is comparable or bigger than r 0 these boundary
effects will limit the size of the barrier, as shown in Fig. 1.
This effect may be roughly described by simply introduc-
ing a “cutoff” in the free energy barrier distribution at the
most probable one, DF0. Similarly, if a neighboring region
has already flipped, this will make it easier to reconfigure
the domain under consideration. Both of these effects sug-
gest that the real distribution in the mosaic can be better
approximated in a piece-wise manner,
5528
P�DF� �

Ω
Pf�DF� DF # DF0
Cd�DF 2 DF0� DF . DF0

,

where C is a normalization coefficient so thatR1`
2` P�DF� dDF � 1 and Pf�DF� is a function deter-

mined by Pf �DF�dDF � P�sc�dsc. Here DF0 is the
barrier assuming no fluctuation in configurational entropy,
which is calculated without any adjustable constants. This
cutoff distribution of free energy barriers still yields a
f�t� that fits the KWW formula. The resulting b value
is, however, different. The results from the cutoff distri-
bution for b at Tg are shown in Fig. 2 as a solid line. The
slope of b versus

p
D is considerably increased and b

now saturates to 1 for liquids with D . 150, a value char-
acteristic of the so-called strong liquids. The improvement
of agreement over the pure Gaussian is significant, but-
tressing the case for a dynamic mosaic structure.

Well above TA, the critical temperature predicted by
mode coupling theory for dynamic slowing, relaxation is
dominated by collisions between molecules. Here dy-
namics can be described by the Debye law with a single
exponential. As the temperature gets closer to TA, weakly
nonexponential behavior emerges, a phenomenon that can
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FIG. 2. Correlation between the b value for non-Debye relaxa-
tion and square root of fragility D. The points are from a wide
range of experiments collected in [18]. It is important to recognize
that, in this type of “meta-analysis” of experiments, different in-
vestigators use somewhat different ways of fitting relaxation data
and defining the glass transition time scale in the laboratory, lead-
ing to a spread of values for the measured b as reported by Böh-
mer et al. [18]. For example the b value for n-propanol ��� is
actually measured for a glass transition with a time scale of 1022 s,
4 orders of magnitude smaller than the usual glass transition
relaxation time, 100 s, leading to a larger b. The pure SiO2
number seems anomalous and deserves careful remeasurement
since it differs considerably from the GeO2 result. The dashed
line is obtained by assuming a Gaussian free energy barrier dis-
tribution. It is quite linear. This approximation tends to over-
estimate the width of the distribution, resulting in a smaller b.
Results from the more realistic cutoff distribution, taking into ac-
count the constraints imposed by the mosaic structures, yield the
solid line. Neither theoretical result contains any fitting parame-
ters, owing to the universal character of the surface energy costs,
obtained by microscopic estimates of the domain size of Tg.
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FIG. 3. The temperature dependence of b for the most studied
fragile glass former, o-terphenyl, is shown. The dashed line
contains the experimental measurements of Dixon and Nagel and
their extrapolation to lower temperatures [30]. The solid line is
the prediction made with random first order transition theory.
Again no adjustable parameters are present in the theory.

be explained by mode coupling theory [11]. Between TA

and TK , the deviation from the Debye law will become
more significant upon cooling as a consequence of in-
creasing heterogeneity just as in the Gaussian analysis.
For the approximate Gaussian distribution, one finds b �

1
p

D
T2TK

TK
at temperature close to Tg. In Fig. 3, we also

plot the temperature dependence of b predicted by the
more accurate cutoff distribution for o-terphenyl and com-
pare it with experiments [30]. In computing the T depen-
dence we have assumed that s0 has its low temperature
value, although near TA, s will be smaller, leading to faster
crossover to the exponential relaxation above TA. The ac-
tivated event description breaks down as TA is approached
from below and merges with the effects predicted by mode
coupling theory. A treatment containing both effects near
TA remains a problem for the future.

We see that the mosaic structure expected by the ran-
dom first order transition approach to the glass transition
quantitatively explains both the trends in the relaxation
dynamics over a range of substances and the temperature
dependence of the deviation from Debye behavior in the
highly viscous regime.
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