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Simple One-Dimensional Model of Heat Conduction which Obeys Fourier’s Law
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We present the computer simulation results of a chain of hard-point particles with alternating masses
interacting on its extremes with two thermal baths at different temperatures. We found that the sys-
tem obeys Fourier’s law at the thermodynamic limit. This result is against the actual belief that one-
dimensional systems with momentum conservative dynamics and nonzero pressure have infinite thermal
conductivity. It seems that thermal resistivity occurs in our system due to a cooperative behavior in
which light particles tend to absorb much more energy than the heavier ones.
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Fourier developed his theory of heat conduction at the
beginning of the nineteenth century. It states (in actual
notation) that the temperature profile of an isolated sys-
tem will evolve following the conservation equation

cy�T �
≠

≠t
T �r, t� � = ? �k=T � , (1)

where T �r, t� is the temperature measured by a probe
at position r at time t, cy�T � is the specific heat per
unit volume, and k is the thermal conductivity. Fourier’s
law may be applied, in particular, to a system in contact
with two heat reservoirs at different temperatures placed
at x � 0 and x � L. In this case, the stationary state
has the property of

J � 2k�T�
dT
dx

� const , (2)

where J is the stationary heat flux through the system.
Notice that one should assume that there is not mass
transport and/or other mechanisms different than heat
conduction. This law has been extensively tested in ex-
periments in fluids and crystals. However, we do not
understand yet many of its fundamental aspects (see, for
instance, the review in [1]). In particular, its derivation
from a microscopic Hamiltonian dynamics and the ex-
istence of a local equilibrium that gives meaning to the
local temperatures are open problems.

Actually, heat transport in one-dimensional systems is
an interesting problem in the context of both nonlinear
dynamics and statistical physics. Long ago, Peierls pro-
posed a successful perturbative theory, based on a phonon
scattering mechanism, in order to explain the thermal con-
ductivity in solids [2]. In particular, Peierls theory pre-
dicts that we do not expect a finite thermal conductivity
in one-dimensional monoatomic lattices with interactions
between nearest neighbors. Accordingly, the temperature
profile of a chain of N harmonic oscillators is flat and its
thermal conductivity goes like k�N� � N for large enough
N . More generally, any integrable Hamiltonian system is
expected to have such divergent conductivity because its
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associated normal modes behave like a gas of noninteract-
ing particles carrying energy from the hot source to the
cold one with no loss. On the other hand, there are non-
integrable systems, to which the Peierls theory does not
apply directly, whose behavior is known to agree with its
prediction. For example, the thermal conductivity of the
Fermi-Pasta-Ulam-b model goes like k�N� � Na , with
a � 0.43. The value of a can be predicted by using a
mode coupling approximation to the corresponding inter-
acting gas of phonons [3]. An exception to these results
is systems with translation invariant Hamiltonian that have
zero pressure. For instance, a one-dimensional chain of
rotators shows normal heat conduction [4].

In general, as an extension of the prediction from the
Peierls argument, it is presently believed that one should
not expect in general a finite thermal conductivity in one-
dimensional systems with momentum conserving interac-
tions and nonzero pressure [5]. The goal of this Letter is
to show a counterexample to the above belief. We intro-
duce a system that, although its particle interaction con-
serves momentum and the pressure is nonzero, the energy
behavior has a diffusive character and Fourier’s law holds.
Therefore, we think that in one-dimensional systems with
nonzero pressure, the conservation of momentum does not
seem to be a key factor to find anomalous heat transport.

Let us introduce our model. In a line of length L, there
are N point particles of different masses interacting ex-
clusively via elastic collisions. In order to minimize the
finite size effects, the particles have only two different
masses and they alternate along the line, i.e., m2l21 � 1
and m2l � �1 1

p
5��2 with l � 1, . . . , N�2. We have

chosen the masses of the even particles to be the most
irrational number in order to minimize possible period-
icities, resonances, or nonergodic behaviors. At the ex-
tremes of the line there are thermal reservoirs at fixed
temperatures T1 � 1 and T2 � 2 at x � 0 and x � L,
respectively. We simulate the reservoirs by using the fol-
lowing process: each time particle 1 �L� hits the boundary
at x � 0 �x � L� with velocity y, the particle is reflected
with the velocity modulus
© 2001 The American Physical Society
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∑
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m1�L�b1�2�
ln

µ
1 2 e2

b1�2�
2

m1�L�y
2

∂∏1�2

, (3)

where b1�2� � 1�T1�2�. This reversible and deterministic
map is due to van Beijeren [6]. In order to check the influ-
ence of the type of reservoir into the system properties we
have also used more conventional stochastic boundary con-
ditions, but only different finite size effects and no other
relevant behavior have been observed. For T1 fi T2 there
is a flow of energy from the high temperature reservoir to
the low one, and the system then evolves to a nonequilib-
rium stationary state. A version of this model in which
the masses are randomly placed was already studied by us
[7]. In this work, the system thermodynamic limit behav-
ior was not considered, but the local equilibrium property
was demonstrated. Our goal in this Letter is to check if the
system has a finite thermal conductivity in the thermody-
namic limit N , L ! ` with N�L � 1. With this aim we
performed a detailed numerical analysis along the follow-
ing lines.

(1) The existence of a nontrivial thermal profile.—
We define the local temperature by measuring the mean
kinetic energy of each particle and its mean position
at the stationary state. We computed the profiles for
N � 50, 100, 500, 1000, 2000, with fixed N�L � 1,
T1 � 1, and T2 � 2. Figure 1 shows the local tempera-
ture as a function of x�N (by seeking clearer figures,
we have performed local averaging of the temperatures
and positions to draw only 100 points; no difference is
found by drawing all the points). We see in Fig. 1 that
the temperatures follow linear profiles in the interval
x�N [ �0.4, 0.6� with slopes depending on the system
size. This slope apparently tends to converge to unity but
we find that the convergence is so slow that we cannot
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N=50  ; T(x)=1.31(0.02)+0.66(0.05)x/N
N=100 ; T(x)=1.237(0.008)+0.72(0.02)x/N
N=500 ; T(x)=1.126(0.002)+0.846(0.004)x/N
N=1000; T(x)=1.112(0.001)+0.856(0.003)x/N
N=2000; T(x)=1.098(0.002)+0.871(0.004)x/N

FIG. 1. Temperature profile at the stationary state for N par-
ticles. Lines are the best fits of the data in the interval x�N [
�0.4, 0.6�. The corresponding equations are shown in the box.
Errors in the coefficients are in brackets.
(numerically) exclude the possibility that the limiting
temperature profile is nonlinear (which is not against
Fourier’s law). In any case, a nonflat profile is clearly
expected in the thermodynamic limit.

(2) The averaged heat current.— If Fourier law holds
and the heat conductivity is finite, the mean heat cur-
rent, J � N21

PN
i�1 miy

3
i �2, should go to zero as 1�N

whenever T1,2 and N�L are kept fixed. The data do not
give us a conclusive answer. In fact, we fitted the experi-
mental points (J corresponding up to seven different N’s)
to behaviors like J � aN20.71, J � aN21�1 1 bN21�,
J � aN21�1 1 b lnN�, and J � aN21�1 1 b� lnN�
all of them with regression parameters of order 0.999.
This reflects that the corrections to the leading order are
dominant and that we are far from the asymptotic regime
for the observable heat current [8]. Therefore, the direct
use of the Fourier law k � JN��T2 2 T1� does not clarify
(from the numerical point of view) the existence of a finite
heat conductivity in the thermodynamic limit.

(3) The current-current self-correlation function.—The
heat conductivity is connected to the current-current
self-correlation function evaluated at equilibrium via its
time integral (Green-Kubo formula). The integral has
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FIG. 2. (a) Logarithm of the total heat current self-correlation
function versus logarithm of t. The data correspond to a system
with N � 500. The solid line is the best fit for the asymptotic
region. The number of independent averaged histories is of order
107. (b) The logarithm of the absolute value of the local heat
current self-correlation function versus logarithm of t (see text).
(1) and (3) symbols correspond to a system with N � 500
and N � 1000, respectively. (±) are the results for a system of
N � 500 particles with equal masses. Lines are the best fits
to the asymptotic regions. Their equations are shown in the
box. Slope 2.98�0.02� corresponds to the equal masses case.
Slopes 1.234�0.006� and 1.360�0.002� correspond to N � 500
and N � 1000 with different masses, respectively. In all cases,
the number of independent averaged histories is of order 109.
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some meaning whenever the correlation function decays
as t212D with D . 0. We measured the current-current
correlation function with periodic boundary conditions
and total momentum equal to zero. We find that the
simulation has strong finite size effects. Nevertheless,
we can see a clear tail of order t21.3 [see (a) in Fig. 2].
In order to confirm such a result we computed the local
current-current correlation function since it has much
better averaging properties. We show in Fig. 2(b) the
behavior of the logarithm of c�t� � � ji�0�ji�t�� with
ji�t� � mi � yi�t�3�2, where the average is evaluated at
the equilibrium state with T1 � T2 � 1.5 and we average
over all the particles and different initial states. In order
to check that we are doing right we first computed c�t�
when the system has equal masses. In this case we
know from Jepsen that the exact solution [9] behaves like
c�t� � t23 for t large enough. In Fig. 2(b) we see how
this behavior is obtained numerically and we also see that
for the different masses case c�t� decays as t212D where
D is again close to 0.3. This implies that we can define
a finite thermal conductivity via Green-Kubo. We think
that the decay of correlations is so slow that it explains
the strong finite size effects observed in the temperature
profile and in the mean heat current. In fact, we can argue
that JN��T2 2 T1� � k 2 AN2D which explains why
we do not see a clear behavior of J with N with system
sizes of order 103 (the corrections are of order unity for
those sizes).

(4) The energy diffusion.—We also wanted to check if
the dynamical version [see Eq. (1)] of Fourier’s law holds.
With this aim, we prepared the system with zero energy
(all particles at rest) and positions x�i� � i 2 1�2, i �
1, . . . , N . Then, we give to the light particle i � N�2 1 1
a velocity chosen from a Maxwellian distribution with tem-
perature T � 1.5. We monitored how the energy flows
through the system until any boundary particle moves. Fi-
nally, we average over many initial conditions. If the sys-
tem follows the Fourier’s law we should see a diffusive
type of behavior (if the thermal conductivity is constant).
Figure 3 shows the energy distribution for N � 100 and
different times measured in units t0 � 0.032. Let us re-
mark here that to apply Eq. (1) the temperature should have
a smooth variation in the microscopic scale to guarantee
that local equilibrium holds. In Fig. 3 we see that, for times
larger than t � 200t0, the average variation in the local
temperature is of order 0.001. Therefore, we may assume
that we are in a regime where Eq. (1) holds. Initially, the
energy of the light particle is transferred to the neighbors
very fast and then the particle stays very cold, much colder
than its neighbors. In fact, in this initial regime, the energy
maxima are moving outwards at constant velocity. This be-
havior ends at around t � 100t0. The system then begins
to slow down and, at t � 300t0, the structure of the energy
distribution changes, and one can then differentiate the
behavior corresponding to light particles and heavy ones
at least around the maxima of the distribution. We mea-
5488
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FIG. 3. Evolution of the energy distribution for an initial con-
dition in which all particles, N � 100, are at rest except particle
51 which has an averaged energy corresponding to temperature
1.5. The figure shows averages over 107 independent realiza-
tions and t0 � 0.032.

sured the mean square displacement of the energy distribu-
tion at each time: s�t� �

P
n�n 2 51�2e�n, t�. We found

that we can fit lns�t� � 26.39�0.04� 1 2.05�0.01� lnt for
t�t0 [ �30, 100�, thus, a ballistic behavior that changes
smoothly until for t . 400t0 where we find a diffusive
behavior lns�t� � 21.00�0.01� 1 1.005�0.002� lnt. This
last result confirms that our system follows even the dy-
namical aspects of Fourier’s law.

As we noticed above, in Fig. 3 we see that the light and
heavy particles seem to follow different energy distribu-
tions, at least for times longer than t � 300t0. In order
to get some more insight about such behavior, we com-
puted the evolution of the total energy stored in the light
(heavy) particles. The result is shown in Fig. 4 where we
can detect five different time regions: (I) t�t0 [ �0, 16�;
only the light particle and the two heavy nearest neigh-
bors have a nonzero velocity. (II) t�t0 [ �16, 23�; the five
central particles (three light and two heavy ones) are mov-
ing. The total energy stored in the light particles reaches a
minimum. (III) t�t0 [ �23, 233�; the heavy particles be-
gin to release energy (on the average) until, at t � 233t0,
both types of particles have the same amount of energy.
(IV) t�t0 [ �233, 600�; light particles keep getting energy
until we reach region. (V) t . 600t0; where the total en-
ergy stored in the light particles reaches a constant value
that exceeds to the one corresponding to the heavier ones.
Let us remark that, in the asymptotic regime t . 600t0,
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FIG. 4. Evolution of the total energy stored in the heavy and
light particles. The conditions are the same as in Fig. 3. MmM
indicates that only the central light particle and the nearest heavy
ones are moving in region I.

the energy distribution is still evolving and, therefore, this
partition of energy between both degrees of freedom is an
asymptotic dynamical property of the system.

In order to discard any nonergodic behavior of our sys-
tem we included reflecting boundary conditions at the ex-
tremes of the chain and we did much longer simulations.
We saw that the isolated system tends to the equilibrium
in which equipartition of energy between all degrees of
freedom holds. That is, the total energy stored in the
light particles is equal to the one stored in the heavy
ones. Moreover, we have checked that the system at any
stationary state (equilibrium or nonequilibrium) does not
present the property of nonequipartition of the energy.
We think that this nonequipartition of the energy between
degrees of freedom is responsible for the normal thermal
conductivity. In fact, we see that, around the distribution
maxima, the particles arrange in the form that hot light
particles are surrounded by cold heavy ones. The energy
is then trapped and released in a diffusive way. But we
also see that the release is diffusive when a large enough
number of those hot-cold structures develop. Therefore
we think that the mechanism for the thermal resistance
is somehow cooperative.

In conclusion, Peierls arguments have successfully ex-
plained the observed thermal conductivity in solids by ap-
plying a perturbative scheme around the lattice harmonic
interaction. The actual belief is that strong anharmonicity
is not enough to guarantee a normal thermal conduction
in one-dimensional systems. Moreover, it has been pro-
posed that the key lacking ingredient is that the dynam-
ics of the system should not conserve linear momentum
via the existence of local potentials through the line (think
about particles attached to the one-dimensional substrate
through some kind of nonlinear springs). In such a way,
local potentials should act as local energy reservoirs that
slow down the energy flow. These properties, anharmonic-
ity and nonconservation of momentum, are in some way
the ones used on the original Peierls argument. We have
shown a model that does not follow such a clean picture.
Although our one-dimensional model is nonlinear and it
conserves linear momentum (with nonzero pressure), we
find that it follows Fourier’s law. We think that there are
other cooperative mechanisms that can do the job of the lo-
cal potentials. Maybe systems having degrees of freedom
that acquire energy easily but release it in a very long time
scale have, in general, normal thermal conductivity. In any
case, we think that it is worth exploring such a possibility.
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