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Nonlocal Boundary Dynamics of Traveling Spots in a Reaction-Diffusion System
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The boundary integral method is extended to derive a closed integro-differential equation applicable to
computation of the shape and propagation speed of a steadily moving spot and to the analysis of dynamic
instabilities in the sharp boundary limit. Expansion of the boundary integral near the locus of traveling
instability in a standard reaction-diffusion model proves that the bifurcation is supercritical whenever the
spot is stable to splitting. Thus, stable propagating spots do already exist in the basic activator-inhibitor
model, without additional long-range variables.

DOI: 10.1103/PhysRevLett.86.548 PACS numbers: 82.40.Bj, 05.60.Cd, 05.65.+b, 05.70.Ln
Localized structures in nonequlibrium systems (dissipa-
tive solitons) have been studied both in experiments and
computations in various applications, including chemical
patterns in solutions [1] and on surfaces [2], gas discharges
[3], liquid crystal convection [4], and nonlinear optics [5].
The interest in dynamic solitary structures, in particular, in
optical [5] and gas discharge systems [6], has been recently
driven by their possible role in information transmission
and processing.

A variety of observed phenomena can be reproduced
qualitatively with the help of simple reaction-diffusion
models with separated scales [7–11]. Extended models of
this type included nonlocal interactions due to gas transport
[10,12], Marangoni flow [13], or optical feedback [5,14].
A great advantage of scale separation is a possibility to
construct analytically strongly nonlinear structures in the
sharp interface limit. An alternative approach, based on
Ginzburg-Landau models supplemented by quintic and/or
fourth-order differential (Swift-Hohenberg) terms [15], has
to rely on numerics in more than one dimension.

Dynamic solitary structures, observed experimentally
in different applications [2–4,16,17], are most interesting
from the point of view of both theory and potential ap-
plications. Existence of traveling spots in sharp-interface
models is indicated by translational instability of a sta-
tionary spot [12]. This instability is a manifestation of a
general phenomenon of parity breaking (Ising-Bloch) bi-
furcation [18,19] which takes a single stable front into a
pair of counterpropagating fronts forming the front and
back of a traveling pulse. Numerical simulations, how-
ever, failed to produce stable traveling spots in the basic
activator-inhibitor model, and the tendency toward moving
spots to spread out laterally had to be suppressed either by
global interaction in a finite region [12] or by adding an
extra inhibitor with specially designed properties [20].

The dynamical problem is difficult for theoretical study,
since a moving spot loses its circular shape, and a free-
boundary problem is formidable even for the simplest ki-
netic models. Numerical simulation is also problematic,
due to the need to use fine grid to catch sharp gradients
of the activator; therefore actual computations were car-
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ried out for moderate scale ratios. A large amount of nu-
merical data, such as the inhibitor field far from the spot
contour, is superfluous. This could be overcome if it was
possible to reduce the partial differential equation (PDE)
solution to local dynamics of a sharp boundary. Unfor-
tunately, a purely local equation of front motion [19] is
applicable only when the curvature radius far exceeds the
diffusion scale of the long-range variable, whereas a spot
typically suffers splitting instability [7] before growing so
large. On the other hand, the nonlocal boundary integral
method [21] is applicable only when the inhibitor dynam-
ics is fast compared to the characteristic propagation scale
of the front motion, i.e., under conditions when no dy-
namic instabilities arise and traveling spots do not exist.

It is the aim of this Letter to extend the nonlocal bound-
ary integral method to dynamical problems, and to find out
with its help the conditions of supercritical bifurcation for
steadily moving spots. We consider the standard FitzHugh-
Nagumo model including two variables — a short-
range activator u and a long-range inhibitor y:

e2tut � e2=2u 1 V 0�u� 2 ey , (1)

yt � =2y 2 y 2 n 1 mu . (2)

Here V �u� is a symmetric double-well potential with min-
ima at u � 61; e ø 1 is a scale ratio, and other parame-
ters are scaled in such a way that the effects of bias and
curvature on the motion of the front separating the up and
down states of the short-range variable are of the same or-
der of magnitude. The local normal velocity of the front
is, in the leading order,

cn � t21�by 2 k� 1 O�e� , (3)

where k is a curvature and b is a numerical factor depen-
dent on the form of V �u�; for example, b � 3�

p
2 for the

quartic potential V �u� � 2
1
4 �1 2 u2�2. By definition, the

velocity is positive when the down state u , 0 advances.
In the sharp boundary approximation valid at e ø 1, a

closed equation of motion for a solitary spot propagating
with a constant speed can be written by expressing the local
© 2001 The American Physical Society
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curvature in Eq. (3) with the help of a suitable parametriza-
tion of the spot boundary and resolving Eq. (2), rewritten
in a coordinate frame propagating with a speed c (as yet
unknown). It is convenient to shift the long-range variable
y � w 2 n 1 m, so that w�`� � 0 when the up state
u � 1 2 O�e� prevails at infinity. The stationary equa-
tion of w in the coordinate frame translating with the speed
c is

c ? =w 1 =2w 2 w � 2mH , (4)

where, neglecting O�e� corrections, H � 1 inside and
H � 0 outside the spot. The solution can be presented
in the form of an integral over the spot area S :

w�x� � 2
m

p

Z
S
G�x 2 j � d2j , (5)

where the kernel G contains a modified Bessel function K0:

G�r� �
1
2e2�1�2�c?rK0�jrj

q
1 1

1
4c2� . (6)

This integral can be transformed into a contour integral
with the help of the Gauss theorem. To avoid divergent
expressions, the contour should exclude the point x � j .
Clearly, excluding an infinitesimal circle around this point
does not affect the integral (5), since the kernel (6) is only
logarithmically divergent. Replacing G�r� � =2G�r� 1

c ? =G�r� �r fi 0�, we transform the integral in Eq. (5) as

2
Z
S
G �x 2 j � d2j �

Z
S

=j ? H�x 2 j � d2j

�
I

G0

n�s� ? H���x 2 j �s���� ds , (7)

where H�r� � =G �r� 1 cG�r� and n is the normal to the
contour G0. The vector Green’s function H corresponding
to the kernel in Eq. (5) is computed as

H�r� � e2�1�2�c?r
∑

1
2

cK0

µ
jrj

s
1 1

1
4

c2

∂

2

s
1 1

1
4

c2 r
jrj

3 K1

µ
jrj

s
1 1

1
4

c2

∂∏
. (8)
When x is a boundary point, G0 consists of the spot bound-
ary G cut at this point and closed by an infinitesimally
small semicircle about x. The integral over the semicircle
equals to p . Defining the external normal to G as the
tangent t � x0�s� rotated clockwise by p�2, the required
value of the long-range variable on the spot boundary (pa-
rametrized by the arc length s or s) is expressed, using the
2D cross product 3, as

y�s� � 2n 1
m

p

I
G

H���x�s� 2 x�s���� 3 x0�s� ds .

(9)

To obtain a closed integral equation of a steadily moving
spot, it remains for one to define a shift of parametriza-
tion accompanying shape-preserving translation. Recall
that Eq. (3) determines the propagation velocity cn along
the normal to the boundary. In addition, one can intro-
duce arbitrary tangential velocity ct which has no physi-
cal meaning but might be necessary to account for the
fact that each point on a translated contour is, generally,
mapped onto a point with a different parametrization even
when the shape remains unchanged. The tangential ve-
locity can be defined by requiring that each point on the
surface be translated strictly parallel to the direction of
motion, i.e., cnn 1 ctt � c. Taking the cross product
with c yields ct � cn�c 3 t���c ? t�. Then, eliminating
ct gives the normal velocity cn � c 3 t necessary for
translating the contour along the x axis with the velocity
c. Using this in Eq. (3) yields the condition of stationary
propagation,

c 3 x0�s� � t21�by�s� 2 k�s�� . (10)

This equation, combined with Eq. (9), is the basis for fur-
ther analysis.

The form and the propagation speed of a slowly moving
and weakly distorted circular contour can be obtained by
expanding Eq. (10) in c � jcj near the point of traveling
bifurcation t � t0, which is also determined in the course
of the expansion. For a circular contour with a radius a,
Eq. (9) takes the form
y�f� � 2n 1
ma
p

Z 2p

0
e2�1�2�ca�cosf2cosw�

∑
1
2

c coswK0

µ
2a

s
1 1

1
4

c2 sin
1
2
jf 2 wj

∂

1 sin
1
2
jf 2 wj

s
1 1

1
4

c2 K1

µ
2a

s
1 1

1
4

c2 sin
1
2
jf 2 wj

∂∏
dw ,

(11)

where f or w is the polar angle counted from the direction
of motion. The angular integrals that appear in the succes-
sive terms of the expansion are evaluated iteratively, start-
ing from F0�a� � pI0�a�K0�a� and using the relations

Ck�a� �
Z p

0
sin2k11 f

2
K1

µ
2a sin

f

2

∂
df

� 2
1
2

dFk

da
,

Fk�a� �
Z p

0
sin2k f

2
K0

µ
2a sin

f

2

∂
df

� 2
1

2a
d�aCk21�

da
.

The effect of small boundary distortions on y can be
computed directly with the help of Eq. (5), where the inte-
gration should be carried out only over a small area swept
by the displaced spot boundary. This approach is most
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useful for stability analysis with respect to small pertur-
bations of a known static shape, and is easier than using
the expansion of Eq. (9) with a perturbed boundary. For a
nearly circular spot, we expand the perturbations of both
y and the local radius r�f� in the Fourier series

r̃�f, t� � r�f� 2 a �
X
n$2

cnanelnt cosnf ,

ỹ�f, t� �
X
n$2

ŷnelnt cosnf .

(12)
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The curvature is expressed as

k�f� �
r2 2 2r

2
f 2 rrff

�r2 1 r
2
f�3�2

� a21 1 3�c�a�2a2el2t cos2f 1 O�c3� . (13)

Since the displaced point should remain on the bound-
ary, the distortion r̃�w� should be compensated by rigid
displacement of the spot by an increment r̃�f� when ỹ�f�
is computed (see the inset of Fig. 1). The resulting equa-
tion for eigenvalues ln following from Eq. (3) is
tln �
n2 2 1

a2 2
4abm

p2

Z p

0
cosnf df

Z p

0
�r̃�w� 2 r̃�f� cos�w 2 f��e2�1�2�ca�cosf2cosw�

3 K0

µ
2a

s
1 1 ln 1

1
4

c2 sin
1
2
jf 2 wj

∂
dw . (14)
Using the constant zero-order term in the expansion of
Eq. (11), together with k � a21 in Eq. (3), yields the sta-
tionarity condition

n � 2�ba�21 1 ma�K1�a�I0�a� 2 K0�a�I1�a�� . (15)

A stationary solution stable against collapse or uniform
swelling exists in the region in the parametric plane m, n
(Fig. 1) bounded by the cusped curve C joined by the
line n � 0, m . 2�b �

2
3

p
2. This curve is drawn as a

parametric plot with n�a� given by Eq. (15) and m�a� by
Eq. (14) with c, n, and l0 set to zero [or, equivalently,
by the condition F0

0�a� � 0, where F0�a� is the right-hand
side of Eq. (15)].

The first-order term in the expansion of Eq. (11) is pro-
portional to cosf, and should compensate at the traveling
bifurcation point the left-hand side of Eq. (10). This yields
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FIG. 1. The bifurcation diagram for stationary spots at t � 1.
C —existence boundary, S — locus of splitting instability. The
stability region is bounded by the locus of breathing instability B,
branching off at the point of double zero eigenvalue D, and the
locus of traveling instability T . Inset: a circular spot distorted by
second and third harmonics with amplitudes proportional to cn.
The shape is characteristic of a spot propagating to the right, and
the amplitudes are chosen in such a way that the curvature on
the back side vanishes. The center of the gray circle is shifted
from the black to the gray spot to compensate the distortion
at f � 0, so that the integral is taken over the area between
the black contour and the gray circle when the effect of small
distortions on the y field at this point is computed.
the bifurcation condition

t0 � bma�a���I1�a�K0�a� 2 I0�a�K1�a���� 1 2I1�a�K1�a�� ,
(16)

which coincides with the known result obtained by other
means [12]. The curve T in Fig. 1 shows the traveling
instability threshold for t0 � 1. The static spot is unstable
below this curve; the locus shifts up (to smaller radii) as
t decreases, and exits the existence domain at t , 1

4 . At
t . 1, the dominant instability at large radii is a static
splitting instability. Its locus, determined by Eq. (14) with
n � 2 and c � l2 � 0, is the curve S in Fig. 1.

Another possible dynamic instability is breathing insta-
bility [3,7,17]. Its locus is given by Eq. (14) with c �
n � 0 and l0 � iv. The frequency v as a function of the
spot radius a [related to n and m by Eq. (15)] is computed
by solving the equation tv � a22 ImF�a, v��ReF�a, v�,
where F�a, v� is the right-hand side of Eq. (14) com-
puted as

F�a, v� � 2ma�I1�a
p

1 1 iv �K1�a
p

1 1 iv �
2 I0�a

p
1 1 iv �K0�a

p
1 1 iv �� .

(17)

The curve B in Fig. 1 shows the bifurcation locus at t �
1. The instability region retreats to small radii (large n)
at large t and spreads downwards as t decreases. The
balloon of stable solutions disappears at t , 0.5 after the
tips of both dynamic loci meet on the existence boundary.

In the second order, Eq. (11) yields a constant term

y�2,0� � 2ma2�a���I1�a�K0�a� 2 I0�a�K1�a����
1 I1�a�K1�a�� (18)

and a dipole term y�2,2� � q�2,2� cos2f, where

q�2,2� �
1
4ma2�a���I0�a�K1�a� 2 I1�a�K0�a����

2 3I1�a�K1�a� 1 2I2�a�K2�a�� . (19)

The constant term is positive and causes contraction of
the average radius of the moving spot by an increment
ã � 2a2c2by�2,0�.
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The second-order dipolar term in the right-hand side of
Eq. (10), ỹ�2,2� � q̃�2,2�a2 cos2f, as well as the third-order
first harmonic term, ỹ�3,1� � q̃�3,1�a2 cosf, needed for the
solvability condition to follow, are read from Eq. (14) with
n � 2 and l2 � 0, respectively, in zero and first order
in c:

q̃�2,2� � 23a22 1 2bm�I1�a�K1�a� 2 I2�a�K2�a�� ,
(20)

q̃�3,1� � bma2I1�a�K1�a� . (21)

The coefficient q̃�2,2� vanishes at the splitting instability
threshold (curve S in Fig. 1), and must be negative when
the circular spot is stable. Consequently, the distortion am-
plitude is a2 � 2q�2,2��q̃�2,2� , 0, so that the dipole term
causes the contraction of the moving spot in the direction
of motion and expansion in the normal direction.

Continuing the expansion to the third order, we com-
pute the first harmonic term contributing to the solvabil-
ity condition. The latter has the form t̃c � kc3, where
t̃ � t 2 t0 and the coefficient k determining the charac-
ter of the bifurcation is computed as

k � bm���q�3,1� 2 t0
0�a�a2y�2,0� 2 q̃�3,1�q�2,2��q̃�2,2���� .

(22)
The first term is the coefficient at the first harmonic in
the third order of the expansion of Eq. (11). The second
term takes into account the second-order radius correction
to the first-order first harmonic term. The last term gives
the effect of dipolar shape distortion; it becomes dominant
when the locus of splitting instability is approached. Stable
traveling solution should be observed beyond the traveling
instability threshold, i.e., at t̃ , 0; hence, the condition
of supercritical bifurcation is k , 0. The numerical check
of the symbolically computed expression shows that the
traveling bifurcation is always supercritical when the spot
is stable to splitting. The traveling solution bifurcating
supercritically must be stable, at least close to the bifurca-
tion point, where it inherits stability of the stationary spot
to other types of perturbations.

The third harmonic term that appears in the third order
of the expansion delineates, together with the second-order
dipolar term, the characteristic shape of a translating spot,
pointed in the direction of motion and spread sidewise, as
in the inset of Fig. 1, which has also been observed in
numerical simulations [20]. Beyond the range of the bi-
furcation expansion, the shape, as well as the propagation
speed, can be determined by solving numerically Eq. (10)
with y�s� given by Eq. (9) and curvature computed us-
ing the fully nonlinear expression in Eq. (13). Although
the boundary integral method reduces a PDE to a 1D
integro-differential equation, the equation is rather diffi-
cult. An iterative numerical solution tends to break down
rather close to the bifurcation point, as soon as the shape
distortion becomes strong enough to flatten the spot at the
back side. Since the boundary integral equation is nonevo-
lutionary, there is no way to distinguish between a purely
numerical failure of convergence and a physical instability
that would lead to lateral spreading observed in PDE simu-
lations [12].

The above bifurcation expansion proves that a stable
traveling solution does exist in the basic model [(1) and
(2)] in the sharp boundary limit. The result is applicable at
1 ¿ c ¿

p
e. It can be extended straightforward to mod-

els with more than one long-range variable, provided all
long-range equations are linear. Stable traveling spot solu-
tions should be, indeed, more robust in an extended model,
where they have been obtained in PDE simulations [20],
whereas in the basic model they require fine-parametric-
tuning aided by the analytical theory.
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