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Dynamical systems theory is used to construct a general phase-space version of transition state theory.
Special multidimensional separatrices are found which act as impenetrable barriers in phase-space be-
tween reacting and nonreacting trajectories. The elusive momentum-dependent transition state between
reactants and products is thereby characterized. A practical algorithm is presented and applied to a

strongly coupled Hamiltonian.
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Introduction.— Transition state theory (TST) was
developed in the 1930s [1] as a way to determine absolute
chemical reaction rates. An essentially thermodynamic
picture emerged from the original research of Eyring [2]
and this continued to be the dominant formulation of the
theory for many decades. In parallel with Eyring’s work, a
dynamical picture was also being developed by Wigner [3]
and this turns out to have considerable advantages. Not the
least of these is that Wigner’s formulation quickly leads
to the recognition that the transition state (TS) is actually
a general property of all dynamical systems, provided that
they evolve from “reactants” to “products.” The TS, there-
fore, is not confined to chemical reaction dynamics [4], but
it also controls rates in a multitude of interesting systems,
including, e.g., the rearrangements of clusters [5], the
ionization of atoms [6], conductance due to ballistic
electron transport through microjunctions [7], and diffu-
sion jumps in solids [8]. Since transition state theory is
fundamental for transformations in n degree-of-freedom
systems, the work summarized here represents a general
formulation of the nonlinear dynamics and geometry of
classical reaction dynamics. It hinges on finding, for
the first time, the dynamically exact higher-dimensional
structures (separatrices, dividing surfaces) which regulate
transport between qualitatively different states (reagents
and products) in three or more degrees of freedom.

Stated succinctly, TST postulates the existence of a
minimal set of states that all reactive trajectories must
cross and which are never encountered by nonreactive
trajectories. While the original idea of a TS was expressed
as a dividing surface in coordinate space, Wigner rec-
ognized [9] that a rigorous treatment must seek dividing
surfaces in phase space which separate reactants from
products and which no trajectory passes through more
than once. Enforcing this “no recrossing” requirement
has been a major obstacle to applying TST in strongly
coupled, multidimensional systems. Consequently, TST
has remained a configuration-space theory that has further
been confined to low dimensions for which the dividing
surfaces can be found in practice.
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The problem solved in this Letter is the construction of
hypersurfaces of no return in the phase-space of strongly
coupled, multidimensional systems. Our solution leads
naturally to the multidimensional generalization of a saddle
“point” and its associated separatrices.

Until very recently, neither theoretical understanding
nor computing power was adequate to explore phase-space
transport beyond the well-known two degrees-of-freedom
(“2dof™) limit [10]. However, with recent advances in dy-
namical systems theory [11], especially concerning nor-
mally hyperbolic invariant manifolds (NHIM) [12], the
classical theory of chemical reactions can now be an-
chored rigorously in nonlinear dynamics. Indeed, this
Letter makes explicit the long-sought classical structures
that act as transition states in phase-space beyond 2dof.
As we will show, the rigorous way to describe the notion
of a “barrier” in phase-space is through invariant mani-
folds. “Invariance” signifies that trajectories starting on
the manifold must remain on the manifold for the future
and throughout the past. Hence, no trajectory can cross an
invariant manifold. These manifolds, as indeed all other
multidimensional structures in this Letter, become famil-
iar objects when viewed in 2dof: For example, NHIM’s
reduce to none other than periodic orbits. Our treatment
is general, and because it relies on recent advances in dy-
namical systems theory, we provide a “user’s guide” which
we then apply to a realistic system. The following review
of 2dof systems will set the terms for extension to more
degrees of freedom.

Lower-dimensional theory.— Current understanding of
the transition state as a geometrical structure in 2dof sys-
tems has been greatly aided by the discovery [13] that
projection of an unstable periodic orbit into configura-
tion space defines a surface separating reactants and prod-
ucts and is therefore a “periodic orbit dividing surface” or
PODS. In phase-space, the stable and unstable manifolds
of this orbit partition the energy shell. This partitioning
is invariant and separates the reactive and nonreactive dy-
namics. It is not generally recognized that the defining
periodic orbit also bounds a surface in the energy shell.
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This surface partitions the energy shell into reactant and
product regions and is not invariant. Defined in this way
the surface is a surface of no return [6] and thus consti-
tutes the phase-space transition state. It also provides an
unambiguous measure of the flux between reactants and
products [14—16]. These facts will be useful when we
present the multidimensional versions of these structures.

Beyond 2dof, periodic orbits, and their stable and un-
stable manifolds [11], do not have the right dimensionality
to partition the energy shell. Nevertheless, early insights
[17] and recent numerical evidence from molecular
dynamics calculations [5] suggest the existence of higher-
dimensional structures with many of the regulatory
features of the PODS, and it is precisely these phase-space
structures which will be exhibited in this Letter.

Phase-space structure and the transition state for n-
degree-of-freedom nonlinear Hamiltonians.— Consider an
arbitrary Hamiltonian vector field, and suppose it has an
equilibrium point at which the matrix associated with the
linearization of the Hamiltonian vector field about the equi-
librium point has eigenvalues *iw;, j =1,...,n — 1,
and = A. Moreover, assume that the submatrix correspond-
ing to the imaginary eigenvalues is semisimple (i.e., the
complexification is diagonalizable). Using Hamiltonian
normal form theory [18], one can construct a sequence
of local, nonlinear transformations of the coordinates that
transform the Hamiltonian into

n—1

W
H= ) j(Piz +g}) + Agupn
i=1
+ fl(qlv--~7qn*l’pl7---’pn*l’I)
+ f2(q1,---,Qn—l,pl,---,pn—l), (1)
up to arbitrarily high order where (g1,...,¢n, P1,---»Pn)

denote 2n-dimensional canonical coordinates, I = p,q,
and f1, f> are at least third order, i.e., they are responsible
for the nonlinear terms in the Hamiltonian vector field,
and f1(q1,...,9n—1,P1>---» Pn—1,0) = 0. This local re-
sult is valid in the neighborhood of the equilibrium point of
center ® --- ® center ® saddle type [18]. However, once
the phase-space structure is established locally, it can be
continued numerically outside of the local region. In the
energy domain, this continuation is valid up to the next bi-
furcation of phase-space structure.

The simplest n degree-of-freedom linear Hamiltonian
system with a saddle,
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2
(which consists of n — 1 uncoupled linear oscillators and

an uncoupled degree-of-freedom consisting of a saddle
point) can be obtained from the linear part of (1) by a

simple rotation in phase-space. In the language of reac-
tion dynamics, the coordinates (£, pz) are known as the
reaction coordinates, whereas the remaining coordinates
describe the “bath.” In the &-p, phase portrait, when the
saddle is at the origin, trajectories are said to be reacting
if & changes sign. We will show how to generalize this
simple case to a fully nonlinear setting.

Returning to (1), the corresponding Hamiltonian vector
field is given by
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where the last two equations denote the motion in the
reaction coordinates. The rest refer to dynamics in the
bath modes.

A multidimensional saddle “point”.—The dynamics
occurs in the 2n-1-dimensional energy surface given
by setting H in (1) to be a positive constant h. If we
set g, = p, = 0 in (3), then g, = p, = 0. Therefore
gn = pn = 0 is a 2n-2 dimensional invariant manifold.
Its intersection with the 2n-1-dimensional energy surface,
denoted M7" 3, is given by

n—1
Wi
ijn } = :E:_E_(pl + ql)
i=1
+f2(q19""qnil’pl7""pn71)
= h = const > 0. 4)

Regardless of its stability properties, or the size of the non-
linearity, (4) is always an invariant manifold. Moreover, it
is an example of a “normally hyperbolic invariant mani-
fold” (NHIM) [12]. Normal hyperbolicity means that, un-
der the linearized dynamics, the growth and decay rates
of tangent vectors normal to the manifold (the “reaction”)
dominates the growth and decay of tangent vectors tangent
to the manifold. Hence, NHIM’s are higher-dimensional
analogs of saddle points (“saddle spheres”). In our case
the (g, p,) coordinates describe the directions normal to
(4). One key advantage of the structure of the normal form
is that it separates, as much as possible, the dynamics nor-
mal to M7" > and the dynamics tangent to Mj" .
Should the Hamiltonian be given in the form of (1),
a preliminary local transformation is not required. The
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manifold (4) is invariant regardless of the size of the non-
linearity. Moreover, it is also of saddle type with respect
to stability in the transverse directions [19].

However, a key feature of NHIM’s is that they persist
under perturbation. Therefore, if we first need to obtain
the form of (1) by applying normal form theory, then we
are restricted to a sufficiently small neighborhood of the
equilibrium point. In this case the nonlinear terms are
much smaller than the linear terms. Therefore, (4) is a
deformed saddle sphere (since the saddle-point dynamics

n—1

Wu(:]\/l}%n_3) = (ql""’ql‘lspl""’pn)

i=1

= h = const > 0, p, =O],

wi

decouple from the oscillatory dynamics at the linear level)
and has 2n-2 dimensional stable and unstable manifolds
in the 2n-1 dimensional energy surface [20]. Recent dis-
coveries concerning regularity in complex reaction paths
[5], anticipated by Miller [17] and executed by Hernandez
and Miller [21], suggest that the decoupling of the reac-
tion degree-of-freedom from the bath, and the reduction of
complex reactive Hamiltonians to (1), is general.
Multidimensional separatrices.— Another advantage of
computing the normal form is that the unstable and stable

| manifolds of M7" > are known explicitly:

(PP +a}) + f2(q1,- - Gu1,P1 e Pa)

(&)

and W*(M;7" %) is obtained by setting g, = 0 instead of |
pn = 0. Hence, the stable and unstable manifolds of the
sphere have the structure of M7" > X R [22]. They act as
invariant (impenetrable) boundaries between reactive and
nonreactive trajectories, as can be seen by referring to (3)
(see also [23]).

Multidimensional phase-space transition states.—
Consider the hypersurface constructed by setting g, = pj.

On the energy surface this gives

n—1

o
Zj(p? +q) + Ap? +
i=1

fl(qla"'9qn—1ap13"
fZ(Qb---,CInfl,Pl’-- (6)

This is a 2n-2-dimensional surface that can be divided into
two halves: p, > 0and p,, < 0. Each of these halves cor-
responds to a multidimensional surface: the p, > 0 half
corresponds to the surface that is crossed when the system
passes from reactants to products and, consequently, is the
multidimensional phase-space transition state. The bound-
ary of this surface, given by p, = 0, corresponds to the
invariant manifold M?" 3, which is the NHIM. Its role is
analogous to that of the orbit used to define the phase-space
transition state in 2dof systems; that is, it bounds the mul-
tidimensional surface defining the phase-space transition
state. Indeed, it acts as the PODS does in 2dof sys-
tems because by using Stokes’ theorem, one can show
that the flux through the transition state is equal to the
flux through the boundary [24]. It can be proven that
(6) is locally a surface of no return for the trajectories of
Hamilton’s equations given in (3). “Locally” means that
there is a neighborhood of (6) that trajectories starting on
(6) [except those starting on the 2n-3 dimensional invariant
manifold (4)] must leave before they can possibly reinter-
sect (6).

Search algorithm for the transition state.— Our formal-
ism enjoys the great advantage of boiling down to a prac-
tical algorithm:

'9pn—17p3[) +
.,Pn—1) = h = const.

5480

(1) For a given Hamiltonian, find an equilibrium point
for which the eigenvalues of the matrix associated with
the linearization about the equilibrium point have the form
described in Eq. (1).

(2) Transform the Hamiltonian to the normal form de-
scribed above up to the desired degree of accuracy us-
ing a symbolic manipulator. The Hamiltonian is now in
a new coordinate system that we will call the “normal
form coordinates.”

(3) Our arguments above show how to identify the tran-
sition state (6) and the higher dimensional analogs of the
stable and unstable manifolds [22] that mediate the reac-
tion in the normal form coordinates.

(4) These structures can be visualized in the original
coordinates by using the inverse of the normal form trans-
formation, which is computed symbolically along with the
normal form transformation.

(5) Integrals of flux across the transition state can be
computed in the normal form coordinates since the trans-
formation between the original coordinates and the normal
form coordinates is symplectic, hence volume preserving.

Field-induced ionization of a hydrogen atom.—In
crossed electric and magnetic fields, the ionization of
hydrogen atoms [25] over the so-called Stark saddle is
regulated by an unusual phase-space transition state [6]
in 2dof. We now apply our search algorithm to find the
transition state in the full problem. The Hamiltonian in
Cartesian coordinates scaled by the magnetic field is [6]

1 1
H=E(P12+P§+P§)—E
+ 3(X1P2—)C2P1)+§(xl +x2)—8x1 s
(7)

where R = ‘/x12 + x% + x32. After translating the fixed
pointx; = —¢g~ 172 to the origin, the Hamiltonian becomes
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1 1 1
H = E(P% + P% + P%) — E + E(X]Pz — prl)
1
+ g()cl2 +x3) — ex; — £'/2, (8)

where R = [(x; — x;)2 + x5 + x3]"/2 in the new coor-
dinates. The eigenvalues of the matrix associated with
linearization about the origin consist of two imaginary
and one real pair, thereby making the origin center-
center-saddle, appropriate for our methods. We seek a
normal form expansion of the Hamiltonian up to a finite
order N, namely H = Zly:]:z H, (where H, denotes a
homogeneous polynomial in six variables of degree n).
Since the new origin is an equilibrium point, the first order
terms vanish. The second order terms are

1 1
H, = E(Pf + P+ P3) + 3(x1P2 — xPy)
1 1 1
+ <§ — 83/2>x]2 + (E + 583/2>X§
1
+ 583/%32. 9)

Next we construct a real symplectic change of variables
that brings (9) into the real normal form

w w)
Hy = ux\ Py + 7](x§ +P2) + 7(x§ + P2). (10)

For the calculation of the higher order terms we fix the
electric field at the experimentally interesting value of
& = 0.58 [25]. In the normal form, the saddle variables
(x1, P1) appear only as a product, as (1) requires. This
expansion, the three-dimensional NHIM restricted to
the energy surface (4), the four-dimensional stable and
unstable manifolds restricted to the energy surface (5), and
the transition state (6) can all be computed to arbitrarily
high order, and then mapped back into the original coor-
dinates via the inverse of the normal form transformation.
The complete results will be reported elsewhere.

Finally, when we transform the Hamiltonian into action-
angle variables, the resulting normal form is integrable to
arbitrarily high accuracy (since the two oscillatory frequen-
cies are nonresonant for € = 0.58). This and other physi-
cal examples we researched (but omit for lack of space)
explain why trajectories near the saddle are observed to be
regular [5].

Conclusions and outlook.— In this Letter we have given
the analytical and computational framework for analyzing
phase-space transport in systems with three or more de-
grees of freedom when there is a single saddle point. When
saddle points proliferate, each NHIM needs to be treated
separately and the one with the minimum flux is the tran-
sition state.

This work was partly supported by the U.S. National
Science Foundation and by the Centre National de la
Recherche Scientifique.

[1] For reviews, see, e.g., J. C. Keck, Adv. Chem. Phys. 13, 85
(1967); D. G. Truhlar, J. Phys. Chem. 100, 12271 (1996).

[2] H. Eyring, J. Chem. Phys. 3, 107 (1935).

[3] E.P. Wigner, Trans. Faraday Soc. 34, 29 (1938).

[4] W.H. Miller, Faraday Discuss. Chem. Soc. 110, 1 (1998).

[5] R.J. Hinde and R.S. Berry, J. Chem. Phys. 99, 2942
(1993); T. Komatsuzaki and R.S. Berry, ibid. 110, 9160
(1999).

[6] C. Jaffé, D. Farrelly, and T. Uzer, Phys. Rev. Lett. 84, 610
(2000); Phys. Rev. A 60, 3833 (1999).

[71 B. Eckhardt, J. Phys. A 28, 3469 (1995).

[8] M. Toller, G. Jacucci, G. DeLorenzi, and C. P. Flynn, Phys.
Rev. B 32, 2082 (1985).

[9] E.P. Wigner, J. Chem. Phys. §, 720 (1937).

[10] M.J. Davis, J. Phys. Chem. 92, 3124 (1988).

[11] S. Wiggins, Chaotic Transport in Dynamical Systems
(Springer-Verlag, New York, 1992).

[12] S. Wiggins, Normally Hyperbolic Invariant Manifolds in
Dynamical Systems (Springer-Verlag, New York, 1994).

[13] P. Pechukas and F.J. McLafferty, J. Chem. Phys. 58, 1622
(1973); E. Pollak and P. Pechukas, ibid. 69, 1218 (1978);
P. Pechukas and E. Pollak, ibid. 71, 2062 (1979).

[14] A.M. Ozorio de Almeida, N. de Leon, M. A. Mehta, and
C.C. Marston, Physica (Amsterdam) 46D, 265 (1990).

[15] A. Tiyapan and C. Jaffé, J. Chem. Phys. 99, 2765 (1993).

[16] H. Wadi and L. Wiesenfeld, Phys. Rev. E 55, 271 (1997).

[17] W.H. Miller, Faraday Discuss. Chem. Soc. 62, 40 (1977).

[18] V.I. Arnol’d, V.V. Kozlov, and A.I. Neishtadt, Mathe-
matical Aspects of Classical and Celestial Mechanics
(Springer-Verlag, New York, 1988).

[19] This can be seen by examining (3). On g, = p, =0
the transverse directions, i.e., g, and p,, are still of saddle
type (more precisely, they grow and decay exponentially).

[20] At each point on the 2rn-3 dimensional NHIM there is an
exponentially decaying and exponentially growing direc-
tion. The general theory of NHIM’s tells us that this gives
rise to 2n-2 dimensional stable and unstable manifolds.

[21] R. Hernandez and W.H. Miller, Chem. Phys. Lett. 214,
129 (1993).

[22] These are the natural higher-dimensional analogs of the
2dof “cylinder manifolds” described in Ref. [14].

[23] Moreover, the 2n-2 dimensional W*(M?" %) and
W*(M;"~?) bound a region in the 2n-1 dimensional en-
ergy surface. This region is divided into two components
by the transition state. All reacting trajectories start inside
one component, cross the transition state, and pass into the
other connected component. In this way W*(M;"*) and
WH(MP" %) act as a higher dimensional generalization of
the stable and unstable cylinders, respectively [14].

[24] R.S. MacKay, Phys. Lett. A 145, 425 (1990); Nonlinearity
4, 155 (1991).

[25] J. von Milczewski, D. Farrelly, and T. Uzer, Phys. Rev.
Lett. 78, 2349 (1997).

5481



