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Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities
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Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylin-
drical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut
at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode
spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also “scar” the
electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the
eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum.
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The study of billiard systems, in which a particle is con-
fined in a two-dimensional (2D) potential well, has led
to key advances in our understanding of quantum chaos.
For example, scarred wave functions, in which the proba-
bility density is concentrated along an unstable periodic
classical orbit, were first identified in numerical studies
of the stadium billiard [1]. They were subsequently ob-
served in experiments on both 2D stadium-shaped mi-
crowave cavities [2] and semiconductor quantum dots [3].
Wave function scarring also has a pronounced effect on
the current-voltage I�V � characteristics of resonant tunnel-
ing diodes (RTDs) in a tilted magnetic field [4]. Together,
the hard walls of the quantum well in the RTD and the
soft parabolic magnetic potential form an unusual 2D bil-
liard with chaotic electron dynamics. This type of billiard
supports a hierarchy of unstable and stable periodic orbits.
But the electron scattering rate due to LO phonon emission
is so high that I�V � measurements only resolve quantized
states corresponding to short periodic orbits [4].

In this Letter, we show that light rays in a commercial
gradient refractive index (GRIN) lens [5] with perfectly re-
flecting surfaces and tilted planar ends follow chaotic paths
analogous to those of an electron in a RTD. The electro-
magnetic eigenmodes of the lens exhibit spectral fluctua-
tions and scarring associated with many unstable periodic
ray paths. We show that these effects should produce
strong fluctuations in laser transmission experiments. In
contrast to the RTD, the coherence length of laser light
(*1 m) greatly exceeds the dimensions of the GRIN lens.
This permits the resolution, even at room temperature, of
resonances associated with long complicated ray paths.

GRIN lenses are commercially available with a range
of sizes and index profiles and their ends can be polished
optically flat with any desired tilt angle. Here we con-
sider a particular cylindrical lens [5] whose index profile is
n� y� � n0�1 2 a2y2�

1

2 , where n0 � 1.5, a � 608.84 m21,
and y is the radial distance from its axis. Its length and
diameter are L � 2.58 3 1023 m and W � 1023 m, re-
spectively. Ray paths within the lens are generally helical,
like electron orbits in a magnetic field. But rays passing
through the axis (meridional rays [6]) follow planar sinu-
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soidal paths, which undergo specular reflection at the sil-
vered surfaces. Each reflected ray follows a new sinusoidal
path in the same plane as the incident ray. Consequently,
the lens forms a 2D cavity for meridional rays. We have in-
vestigated how the ray dynamics depend on the tilt angle b

of the planar ends (Fig. 1a). When b � 0±, the ray paths
are regular and stable (Fig. 1b); but when b fi 0±, the
angled end surfaces interrupt the regular sinusoidal seg-
ments of the meridional rays at irregular times, thereby
generating chaotic 2D ray dynamics (Fig. 1c) similar to
those of electrons in the RTD [4]. The GRIN medium is es-
sential for creating the chaotic ray paths, in contrast to pre-
vious studies of chaotic rays in deformed optical fibers with
a constant refractive index [7]. Without the index varia-
tion, the parallelogram-shaped cavity would belong to the
so-called “pseudointegrable” class of systems which have
nonchaotic dynamics [8]. The smooth refractive index pro-
file (analogous to the effective parabolic potential for an

FIG. 1. (a) Schematic diagram of 2D closed cavity for meridi-
onal rays in a GRIN lens with reflective surfaces, showing tilt
angle b of planar ends. The dashed line shows the direction
of the ray path at x � 0 (dotted line) relative to the x and y
axes. Gray-scale shading shows refractive index variation (gray:
high; white: low). The upper inset shows refractive index pro-
file n� y�. (b) A regular ray path (b � 0±). (c) A chaotic ray
path (b � 20±). (d)(e) GRIN cavities with semisilvered ends
attached to semi-infinite waveguides (solid dark gray) with con-
stant refractive index and fully silvered walls. Arrows represent
in- and outgoing modes.
© 2001 The American Physical Society
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electron in a magnetic field [4]) and impenetrable bound-
ary walls make an interesting hybrid system with charac-
teristics of both the RTD and traditional flat-bottomed 2D
billiards.

To quantify the transition to chaotic dynamics, Fig. 2
shows Poincaré sections (slices through phase space) gen-
erated by plotting y and u (see Fig. 1) each time the ray
path intersects the line x � 0 with dx�dt . 0. At b � 0±,
the points lie on concentric elliptical rings (Fig. 2a) show-
ing that the ray paths are stable. When b is increased to
10± (Fig. 2b) the phase space reveals large KAM islands
of stability [9] embedded in a chaotic sea. At b � 20±

(Fig. 2c) the phase space is almost completely chaotic and
contains very few stable islands, which are too small to
show up in the figure.

We consider how the onset of chaotic ray dynamics af-
fects the electromagnetic modes of the planar cavity. For
a given angular frequency v these modes satisfy the wave
equation

=2E 1 k2n2� y�E � 2=

µ
E ?

=n2� y�
n2� y�

∂
, (1)

where E is the electric field, n2� y� is the spatially varying
refractive index, and k � v�c is the free space wave num-
ber. In general, the term on the right-hand side of Eq. (1)
couples the spatial components of E, causing the polar-
ization of the wave to change with time. But we consider
cavity modes in the �x, y� plane with Ex � Ey � 0 (TM
modes). For these modes, the right-hand side of Eq. (1)
is zero as E and =n2 are orthogonal. The nonzero field
component Ez�x, y� exactly obeys a scalar wave equation

≠2Ez

≠x2 1
≠2Ez

≠y2 1 k2n2� y�Ez � 0 (2)

analogous to the 2D Schrödinger equation. The boundary
conditions for TM modes (Ez � 0) are identical to those
for a particle in a quantum billiard. This analogy allows us
to analyze this system using the theories of quantum chaos.

The density of the eigenmodes (which have discrete
wave numbers k � kj , j � 1, 2, 3, . . .) can be written

FIG. 2. Poincaré sections showing coordinates � y, u� for rays
crossing the plane x � 0 traveling from left to right in Fig. 1a.
(a) b � 0±. (b) b � 10±. (c) b � 20±.
r�k� �
X
j

d�k 2 kj� � r̄�k� 1 r̃�k� , (3)

where r̄�k� is a smooth, monotonically increasing average
density and r̃�k� is the remaining fluctuating contribution,
analogous to that given by the semiclassical trace formula
(TF) for a quantum chaotic system [9]. It follows from
the TF that the contribution to r̃�k� from a periodic ray of
optical path length L is given by

F�L� �
Z kmax

0
r̃�k�U�k� exp�2ikL� dk , (4)

where kmax is the wave number of the highest eigenmode
considered and U�k� is the Welch window function which
suppresses ringing in the Fourier transform. We used a
compact fourth-order finite-difference method [10] to cal-
culate accurately the first 400 eigenmodes of the chaotic
system with b � 20±. The power spectrum of F�L�
shown in Fig. 3 reveals a series of numbered peaks at L

values equal to the optical path lengths of the associated
periodic ray paths. Peaks 1 and 2 correspond, respectively,
to single and double traversals of a simple “bouncing-ball”
ray path across the cavity. There is a nonisolated family of
these marginally stable paths which have previously been
identified in chaotic stadium billiards [11]. Peaks 4–10,
12, and 14 are associated with progressively more com-
plicated periodic ray paths involving multiple reflections
from the cavity walls. There are also three additional
peaks (3, 11, and 13) for which no periodic path exists.
They correspond to “ghosts” [12] of the stable periodic

FIG. 3. Top: Fourier power spectrum of density of modes as
a function of optical path length L, showing numbered peaks.
The inset box shows peak 3 vertically magnified by factor of 20.
Bottom: real (solid line) and ghost (dashed line) periodic ray
paths which correspond to the peaks indicated by the numbers
to the left of each path.
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trajectories 3, 11, and 13 that are found in a cavity of the
same shape but with a constant refractive index.

The GRIN cavity has great potential as an experimental
probe of wave chaos. To illustrate this we calculate
the transmission properties of two cavities with b � 0±

(Fig. 1d) and b � 20± (Fig. 1e) which are weakly coupled
to planar waveguides of width W� cosb, with fully silvered
walls [which are perpendicular to the �x, y� plane]. The
waveguides are semi-infinite in extent in x and have a con-
stant refractive index n0. The weak coupling is achieved
by semisilvering the ends of the cavity so that the reflec-
tion coefficient of each individual end surface is �0.98
in the frequency range under consideration. To calculate
the transmission coefficient, T , of the system, we solved
Eq. (2) matching the solution across the semisilvered ends
to linear combinations of both propagating and evanescent
guided modes in the input (left) and output (right) wave-
guides. T , the ratio of the power in the incident and
transmitted modes, is found by calculating their Poynting
vectors. In our calculations, only a single incident propa-
gating mode (the lowest) is used. We note that this is pos-
sible experimentally [13] and emphasize that similar
results are obtained for other incident modes and lead
refractive index profiles.

Figure 4a shows T versus v for b � 0± (stable ray
paths). The graph exhibits sharp peaks at v values for
which a half-integer number of wavelengths fits along the
cavity. These are Fabry-Perot resonances with a period
of Dv � 2pc�n0L � 2.44 3 1011 rad s21. In addition,
five much smaller peaks (arrowed) are present. These are
due to the incident mode (with one lateral antinode across

FIG. 4. (a) Transmission spectrum of the weakly coupled cav-
ity with b � 0± (Fig. 1d) showing strong and weak (arrowed,
vertically magnified by 10) transmission peaks. Vertical lines
indicate the angular frequencies of the eigenmodes of the corre-
sponding closed cavity. Solid lines mark eigenmodes related to
the resonant peaks. (b) As (a) with b � 20±.
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the y direction) coupling weakly to Fabry-Perot-like states
in the cavity with three lateral antinodes. This coupling oc-
curs because the modes in the waveguides and the resonant
states in the cavity have slightly different y dependencies,
arising from the different refractive index profiles. The
vertical lines in Fig. 4a show the angular frequencies of
the eigenmodes of the closed cavity shown in Fig. 1b. The
solid lines indicate the small subset of modes which corre-
spond to the resonant peaks in T �v�. Since Ez vanishes at
the ends of the closed cavity for these modes, their angu-
lar frequencies are slightly higher than the v values cor-
responding to resonant transmission through a cavity with
semisilvered ends.

Figure 4b shows the T �v� plot and closed cavity eigen-
frequencies (vertical lines) corresponding to the strongly
chaotic ray dynamics at b � 20±. At each peak in T �v�,
the distribution of electric field intensity in the cavity
closely matches that of a closed cavity eigenmode. Unlike
Fig. 4a, all but two of the eigenmodes produce discernible
peaks. This means that even though only one mode is ex-
cited in the incident wave, almost the entire eigenmode
spectrum of the associated closed system can be probed
by measuring T �v�. By contrast, in RTDs only a small
number of eigenstates are accessible to experiment due to
tunneling selection rules [4].

In quantum chaotic systems, unstable periodic orbits
scar subsets of wave functions [1–4]. An analogous effect,
a concentration of electric field intensity along an unstable
periodic ray path, occurs in many of the resonant modes of
the weakly coupled GRIN cavity. Figure 5 shows the elec-
tric field intensity distributions at five different frequencies.
Each of these distributions is scarred by the unstable peri-
odic ray path shown overlaid. Of particular note is mode
(b), which is concentrated along the ghost path associated
with peak 3 in Fig. 3. Also shown in Fig. 5 are the Wigner
functions of each scarred mode

g� y, u� ~
Z

Ez�r 1 l�Ez�r 2 l� exp�22ikn�r�s ? l� dl ,

(5)

which give a phase space representation of the electric
field distribution analogous to the classical Poincaré sec-
tion [14]. In Eq. (5), r � �x, y�, l is a displacement from r
in the �x, y� plane, and s � �cosu, sinu�. The Wigner func-
tions are calculated for x � 0, as are the Poincaré sections
in Fig. 2. The large positive values of g (white) are cen-
tered on the initial coordinates � y, u� of the corresponding
scarring ray paths. This provides clear evidence that the
scar patterns originate from these ray paths.

The density of modes modulation and eigenmode
scarring should both be experimentally observable. We
propose to excite resonant modes within the cavity with a
tunable laser source, measuring the transmitted power di-
rectly with photodetectors. GRIN lenses and optical fiber
components are usually optimized to work at optical or
near infrared (NIR) wavelengths. At the widely used NIR
wavelength l � 1550 nm, the average frequency spacing
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FIG. 5. Left: Electric field intensity (white � 0) in the x-y
plane [axes shown above (a)] for weakly coupled cavity modes
with b � 20±. Scarring real (ghost) paths are shown by solid
(dashed) overlays. Right: Corresponding Wigner functions
g� y, u� (black ø 0, gray � 0, and white ¿ 0) with coordinate
axes overlaid on (a). The coordinate ranges are 20.5 mm ,
y , 0.5 mm and 0± , u , 90±, as in Fig. 2. Crosses indicate
initial coordinates of the scarring ray paths. The angular fre-
quencies are (a) 8.941 3 1012 rad s21, (b) 7.913 3 1012 rad s21,
(c) 8.726 3 1012 rad s21, (d) 8.855 3 1012 rad s21, (e) 8.803 3
1012 rad s21.

between adjacent eigenmodes in the GRIN cavity is
�13 MHz. To resolve peaks in T �v� corresponding to in-
dividual eigenmodes would therefore require a laser with
linewidth and tuning precision of �1 MHz. Linewidths
of this order have been reported in tunable lasers [15]. Al-
ternatively, we could measure T as a function of tempera-
ture at fixed v. Thermal expansion would change the size
of the cavity and thereby alter the optical path lengths of
the periodic rays, with transmission maxima occurring for
quantized values of L�l. For typical coefficients of ther-
mal expansion and thermal refractive index variation [16],
the average temperature spacing between adjacent reso-
nances would be between 0.01 and 0.1 K. This method has
analogies with studies of chaotic semiconductor billiards in
which the transport properties of a two-dimensional elec-
tron gas with a fixed Fermi energy are probed as a function
of magnetic field [3]. Working at a fixed frequency might
also allow direct observation of the eigenmodes of GRIN
cavities doped with erbium ions. At 1550 nm, Er ions
luminesce and the patterns of luminescence intensity, ob-
served through unsilvered windows in the upper and lower
(z fi 0) surfaces of the sample, would directly reveal the
spatial distribution of the cavity eigenmode with subwave-
length resolution [17].

In summary, we have shown that meridional rays in a
commercially available GRIN lens with tilted planar ends
exhibit chaotic dynamics analogous to electron motion in
both RTDs and sub-micron-sized electron billiards. In con-
trast to these semiconductor systems, high resolution mea-
surements of the mode spectrum of the GRIN lens should
be possible even at room temperature. Such experiments
could provide insights for understanding the quantum prop-
erties of analogous electronic systems with mixed stable/
chaotic dynamics, which are of topical interest and beyond
the scope of current theories [18]. They could also inves-
tigate the effects of chaotic nonmeridional ray paths on
the three-dimensional electromagnetic modes of the cylin-
drical lens (which are solutions of the full vector wave
equations). Since GRIN materials are well developed and
widely used in optoelectronics and telecommunications,
they might provide a natural route to the technological ex-
ploitation of ray and wave chaos.
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