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Entangling Operations and Their Implementation Using a Small Amount of Entanglement
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We study when a physical operation can produce entanglement between two systems initially disen-
tangled. The formalism we develop allows us to show that one can perform certain nonlocal operations
with unit probability by performing local measurement on states that are weakly entangled.
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Much of the theoretical effort in quantum information
theory has been focused so far in characterizing and quan-
tifying the entanglement properties of multiparticles states.
The reason for that lies, in part, in the fact that those states
offer interesting applications in the fields of computation
and communication. In practice, these states are created
by some physical action (or operation) involving the in-
teraction between several systems. This suggests that the
analysis of these operations with regard to the possibil-
ity of creating entanglement may play an important role
in quantum information theory. The first steps in this di-
rection have been recently reported [1,2]. There, given a
Hamiltonian describing the interactions of two systems, it
has been analyzed how to produce entanglement.

In this Letter, we investigate which physical operations
acting on two spatially separated systems are capable of
producing entanglement. This goal is partly motivated by
the recent spectacular experimental progress in the field,
where several physical setups have been recognized to pro-
duce entangled states [3,4]. Thus, some of the questions
we analyze in this paper can be stated as follows: given
a machine acting on two systems, can it create entangle-
ment? If so, what kind of entanglement? The basic
mathematical tool to answer these questions is the isomor-
phism introduced by Jamiolkowski [5]. We will extend
such an isomorphism to relate physical operations [equiv-
alently, completely positive maps (CPM) E ] on two sys-
tems and unnormalized states (positive operators E) acting
on two other systems. This allows us to reduce the prob-
lem of the characterization of physical operations to the
one of physical states, which has been extensively studied
in recent years.

This relation between physical operations and states has
a well-defined physical meaning. In fact, from the isomor-
phism it follows naturally that given a physical operation
E acting on two separated systems A and B initially dis-
entangled (but entangled locally to some other ancilla sys-
tems) we can always obtain the corresponding state E as
an outcome. What is even more surprising is that, start-
ing from the state E, we can always perform some local
measurements such that for certain outcomes the state of
systems A and B changes exactly as if we had applied the
corresponding operation E .
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This last property will allow us to answer an intrigu-
ing question raised in the context of quantum information
theory. Let us assume that we have two qubits A and B
at different locations and we want to apply some nonlocal
operation. This situation raises, for example, in the con-
text of distributed quantum computation [6], where non-
local operations between different quantum computers are
required. So far, it is known that one can use maximally
entangled states, local operations, and classical communi-
cation (LOCC) to perform that task as follows: we can
teleport the state of A to the location of B, perform the
operation locally, and then teleport the corresponding state
back to A. In this process one has to consume two maxi-
mally entangled states (i.e., two ebits) apart from trans-
mitting two classical bits in each direction [7]. However,
it is known that for some kind of operations (like the con-
trolled–NOT gate) one can economize the resources, such
that only one ebit is consumed [8]. In fact, all the op-
erations that have been studied so far [7–10] require an
integer number of ebits. We will show here that many
operations require a noninteger number of ebits. In par-
ticular, if the operation can only entangle qubits weakly,
the required number is much smaller than one. This auto-
matically implies that many tasks in distributed quantum
computation can be performed with a much smaller en-
tanglement than the one required so far.

Let us consider two systems A and B at different loca-
tions, whose states are represented by vectors in the Hilbert
space HA,B, respectively, both of dimension d. Any physi-
cal action on those systems is represented mathematically
by a completely positive linear map E mapping the density
operator r of those systems onto another positive operator
E �r�. The map can be written as

E �r� �
X
k

OkrO
y
k , (1)

where Ok are operators acting on HA ≠ HB. For the sake
of generality, we have not imposed that the map preserves
the trace of r, since we may be interested in physical
actions that occur with certain probability [11].

Our first goal is to determine when a given CPM is
able to produce entangled states. Thus, we first recall the
definition of separable operators. We say that a density
© 2001 The American Physical Society
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operator r is separable with respect to systems A and B if
it can be written as [12]

r �
nX

i�1

jai�A�ai j ≠ jbi�B�bij , (2)

for some integer n, and jai�A [ HA and jbi�B [ HB.
Otherwise, we say that it is nonseparable (or entangled).
Separable positive operators describe states that can be
prepared using local operations and classical communi-
cation out of product states, i.e., are useless for quantum
information tasks that require entanglement. During the
last years, much theoretical effort has been devoted to the
study of the separability properties of operators [13]. In
particular, a necessary condition for separability of a given
positive operator r is that rTA $ 0 [14,15], where TA

denotes transposition in HA in a given orthonormal basis
SA � �jk��d

k�1. This condition turns out to be sufficient as
well when the sum of the dimensions of HA,B does not
exceed five (for example, for two qubits). In higher dimen-
sion there are examples of entangled states represented
by nonseparable operators whose partial transpose is
positive [16].

We can similarly define separable CPM; that is, E is
separable [17] if its action can be expressed in the form

E �r� �
nX

i�1

�Ai ≠ Bi�r�Ai ≠ Bi�y, (3)

for some integer n and where Ai and Bi are operators act-
ing on HA,B, respectively. Otherwise, we say that it is
nonseparable. Up to a proportionality constant, separa-
ble maps are those that can be implemented using local
operations and classical communication only [18], i.e.,
useless for several tasks in quantum information.

From definitions (2) and (3) it follows that, if E
and r are separable, then E �r� is also separable. This
reflects the fact that by local actions one cannot create
entanglement.

Now, let us consider two systems, A and B, spatially
separated, each of them composed of two particles (A1,2,
and B1,2). Let us consider a CPM E acting on systems A1
and B1. We are interested in whether this CPM can create
“nonlocal” entanglement between the systems A and B
[19]. We define the operator EA1A2,B1B2 acting on HA ≠
HB [where now HA � HA1 ≠ HA2 and HB � HB1 ≠
HB2 , and dim�HAi � � dim�HBi � � d] as follows:

EA1A2,B1B2 � E �PA1A2 ≠ PB1B2 � . (4)

Here, PA1A2 � jF�A1A2�Fj with

jF�A1A2 �
1

p
d

dX
i�1

ji�A1 ≠ ji�A2 , (5)

and S � �ji��d
i�1 an orthonormal basis. In definition (4)

the map E is understood to act as the identity on the
operators acting on HA2 and HB2 . The operator E has
a clear interpretation since it is proportional to the density
operator resulting from the operation E on systems A1
and B1 when both of them are prepared in a maximally
entangled state with two ancillary systems, respectively.

On the other hand, we have

E �rA1B1� � d4 trA2A3B2B3 �EA1A2,B1B2rA3B3PA2A3PB2B3 � .
(6)

This can be proved as follows. First, we can write
d2 trA3B3 �rA3B3PA2A3PB2B3� � r

T
A2B2

, where T means
transpose in the basis SA2 ≠ SB2 . Now, using (4) one can
readily show that E �rA1B1 � � d2 trA2B2�EA1A2,B1B2r

T
A2B2

�.
Equation (6) has a very simple interpretation. It reflects
the fact that, if we have the state EA1A2,B1B2 at our disposal,
we can always produce the map E on any state of systems
A3 and B3 by performing a joint measurement locally such
that both systems A2A3 and B2B3 are projected onto the
maximally entangled state (5). Of course, this will happen
with certain probability. Below we will show how to
implement CPM with unit probability using this method.

The relations (4) and (6) induce a one-to-one correspon-
dence between CPM acting on tensor product spaces and
positive operators. In fact, this correspondence can be
viewed as an extension of the isomorphism introduced by
Jamiolkowski [5] to tensor product spaces. Using these
relations it is very easy to show the following: (i) E is
separable iff EA1A2,B1B2 is separable with respect to the
systems �A1A2� and �B1B2�. Thus, we can study the
separability of CPM by studying the problem of sepa-
rability of positive operators. This immediately implies
that we can use all the results derived for the latter prob-
lem [13]. (ii) E can create nonlocal entanglement be-
tween A and B iff EA1A2,B1B2 is nonseparable with respect
to the systems �A1A2� and �B1B2�. In particular, we can
always obtain a state whose density operator is propor-
tional to EA1A2,B1B1 out of separable states by entangling
our systems locally with ancillas [20]. (iii) Let us as-
sume that E

TA1A2
A1A2,B1B2

$ 0, where TA1A2 denotes transpo-
sition with respect to A1 and A2 in the basis SA. Then,
if rTA1 $ 0 we have that E �rA1B1�TA1 $ 0. If addition-
ally EA1A2,B1B2 is entangled (i.e., bound entangled [21]),
then we can always produce bound entangled states out of
nonentangled states by using the map E (see ii). (iv) If E
corresponds to a unitary action, the corresponding operator
has rank one, i.e., it can be written as E � jC� �Cj, where
jC� [ HA1 ≠ HA2 ≠ HB1 ≠ HB2 is a normalized state.

We illustrate some of the above results with some simple
examples concerning qubits �d � 2�. First, let us as-
sume that EA1A2,B1B2 is an entangled state with positive
partial transposition. According to (i) the corresponding
completely positive map E is nonseparable and accord-
ing to (iii) �E �r�	TA1 $ 0 for all r separable. But in this
case, positive partial transposition is equivalent to sepa-
rability [14,15], and therefore E �r� is separable for all r

separable. However, if we allow for input states that are lo-
cally entangled with ancillas, the final state will be (bound)
545



VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001
entangled according to (ii). As for another example, we
consider a family of phase gates of the form

U�aN � 
 e2iaN s
A1
x ≠s

B1
x , aN 
 p�2N , (7)

where the s’s are Pauli operators. These gates are of
the same kind as the ones used in the discrete Fourier
transform [23]. The corresponding operator EA1A2,B1B2 �
jcaN � �caN j, where

jcaN � � cos�aN � jF1�A1A2 jF
1�B1B2

2 i sin�aN � jC1�A1A2 jC
1�B1B2 , (8)

and jF1� � �j00� 1 j11���
p

2 and jC1� � �j01� 1

j10���
p

2 are Bell states.
Let us now consider a basis of maximally entangled

states of systems A1A2 (and B1B2) as jFi� � ' ≠ UijF�,
where Ui are unitary operators and jF� is defined in (5).
If we perform a measurement on that basis and obtain
jFi�A1A2 and jFj�B1B2 the state of our systems will be
E �Ui ≠ UjrA1B1U

y
i ≠ U

y
j �. Thus, we see that as a re-

sult of the measurement we either implement the CPM,
E , or local operations followed by the CPM. Below, we
will show how to use this effect in order to perform arbi-
trary nonlocal unitary operations by using entangled states.
We will restrict ourselves to the case of qubits, but our re-
sults can be easily generalized. We will first show how to
perform gates of the form (7) with probability 1�2. If we
fail, we will show that by using other entangled states and
performing more measurements of the same kind, we can
make the probability of success equal to one. Then we will
show how we can use these results to implement U�a� for
arbitrary a. Finally, we will show that any arbitrary uni-
tary operation can be implemented using the method de-
scribed above.

Let us start considering the gates U�aN � (7). The
amount of entanglement of the corresponding state jcaN �
(8) is given by its entropy of entanglement

E�caN � � 2x log2�x� 2 �1 2 x� log2�1 2 x� , (9)

where x � cos2�aN � � cos2�p�2N �. On the one hand,
E�ca2 � � 1, i.e., according to our discussion U�p�4� is
capable of creating 1 ebit of entanglement. On the other
hand, E�ca1 � � 0, i.e., U�p�2� � 2isx ≠ sx is a local
gate. For N $ 2, we have that E�caN � is monotonically
decreasing with N . Note that for N sufficiently large, we
can regard (7) as an infinitesimal transformation and use
the results of Ref. [2] to show that the gate can optimally
create an entanglement proportional to aN . We will show
that in that limit U�aN � can be implemented with unit
probability by using an average amount of entanglement
also proportional to aN , assisted by classical communica-
tion of approximately 2 bits in both directions.

We want to perform the gate on systems A3B3
and obtain the output state in systems A1B1. We assume
that both systems A1A2 and B1B2 are in the state jcaN �
and we measure systems A2A3 and B2B3 in the Bell
basis jCi1,i2� � ' ≠ si1,i2 jF

1�, where s1,1 � ', s1,2 �
546
sx , s2,1 � sy , and s2,2 � sz . Note that all outcomes
of the measurement are equally probable. If the outcome
for A2A3 is jCi1,i2 �, we apply si1,i2 to A1 and proceed
analogously with B2B3. One can readily see that the
resulting operation on A1B1 after this procedure will be
(i) U�aN � if i1 � j1, and (ii) U�aN �y � U�2aN � if
i1 fi j1. Thus, with probability 1�2 we obtain the desired
gate, whereas with probability 1�2 we apply U�2aN �
instead, and so we fail. In order to apply the desired gate
with probability one, we proceed as follows. If we fail, we
repeat the procedure but with systems A1A2 and B1B2 pre-
pared in the state jc2aN �. With a probability 1�2 we will
succeed, and otherwise we will have applied U�2aN �3 to
the original state. We continue in the same vein; that is,
in the kth step we use systems A1A2 and B1B2 in the state
jc2k21aN � so that if we fail altogether we will have applied
U�2aN �2k21. For k � N we have that U�2aN �2N 21 �
2U�aN �, and therefore even if we fail we will have
applied the right gate, so that the procedure ends.

The total average entanglement which is consumed dur-
ing this procedure is given by

E�U�aN �	 �
NX

k�1

µ
1
2

∂k21

E�caN2k11 � � aNfN , (10)

where

fN �
1
p

NX
k�1

2kE�cak � , f` � 5.97932 . (11)

In (10), the weight factor of pk � �1�2�k21 gives the prob-
ability that the kth step has to be performed. Thus, we ob-
tain E�U�aN �	 , aNf`. Because of the fact that in each
step of this procedure one bit of classical communication
in each direction is necessary [24], the average amount of
classical communication is given by 2 2 �1�2�N22 bits.

Although the procedure described above allows one only
to implement gates with “binary phases” aN � p�2N , any
gate U�a� with arbitrary phase a can be approximated
with arbitrarily high accuracy by a sequence of gates of
the form U�aN �, consuming on average E # f`a ebits
of entanglement. Furthermore, this procedure allows one
to implement any arbitrary two-qubit unitary operation
U. We can write any such operation as U � e2iHt �
limn!`�' 2 iHt�n�n, where H is a self-adjoint operator.
We can thus apply infinitesimal gates Un � �' 2 iHt�n�
sequentially using an extension of the scheme described
above. Note that after such an infinitesimal operation
we can perform local operations without consuming en-
tanglement. This allows us to restrict the form of the
Hamiltonians to those that can be written as

H0 �
3X

k�x,y,z

mksA
k ≠ sB

k 

3X

k�1

Hk . (12)

This can be viewed as follows. First, let us write H in
terms of Pauli operators for systems A and B as H �
�a ? �sA 1 �b ? �sB 1 �sA ? g �sB, where g is a matrix and
�s is the Pauli vector. If we apply an infinitesimal local
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transformation in A and B with Hamiltonians 2 �a ? �sA and
2 �b ? �sB, respectively, this will be equivalent to having H
with a � b � 0. Moreover, prior to this operation and
after the application of Un we can always perform local
operations such that we obtain an evolution given by H0
(12), where the m’s are the singular values of g. Since
the Hk commute, we have that the corresponding unitary
operation is given by

Ũn � e2iH1t�ne2iH2t�ne2iH3t�n, (13)

a sequence of operations of the form (7), for which we
already have provided a protocol. The required amount
of entanglement is therefore given by EU � f`t�m1 1

m2 1 m3� ebits.
Using the results of Ref. [2], one can compare for small

aN (large N) the average amount of entanglement used
up to implement the gate (7) with the maximal amount
of entanglement which can be produced with the help of
a single application of the gate [25]. One finds that for
aN ! 0, that the ratio E�U�aN �	�Ecreate�U�aN �	 is given
by �3.1268.

As an aside, let us mention that we have restricted
ourselves here to the implementation of nonlocal unitary
operations. In fact, with the formalism introduced here
one can extend the analysis to nonunitary operations and
even to the implementation of nonlocal measurements. All
these results indicate that the entanglement properties of a
physical operation E are directly related to the entangle-
ment of the corresponding operator E.

In summary, we have shown that the problem of
separability of nonlocal actions can be connected to the
one for states via an isomorphism. The methods intro-
duced here also allow to show how one can implement
certain nonlocal operations if one shares a small amount of
entanglement and is allowed to perform local operations
and classical communication. These local operations
require, in principle, Bell measurement between the
two particles in one location which may be difficult in
practice. However, in experiments one can substitute
these pairs of particles by a single one with more levels
[19], which implies that only single particle operations
are needed. Note that those measurements can then be
easily performed with ions or atoms [4]. On the other
hand, since with photons it is possible both to create
entangled states and to perform Bell measurements (with
certain probability) [26] our method allows us to perform
probabilistic nonlocal gates between photons without
having to use controlled nonlinear interactions [27].
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