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Kinetic Equation with Exact Charge Conservation
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A kinetic master equation for multiplicity distributions is formulated for charged particles which are
created or destroyed only in pairs due to the conservation of their Abelian charge. It allows one to study
time evolution of the multiplicity distributions in a relativistic many-body system with arbitrary average
particle multiplicities. It is shown to reproduce the equilibrium results for both canonical (rare particles)
and grand canonical (abundant particles) systems. For canonical systems, the equilibrium multiplicity is
much lower and the relaxation time is much shorter than the naive extrapolation from grand canonical
results. Implications for chemical equilibration in heavy-ion collisions are also discussed.
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I. Introduction.—Relativistic statistical thermodynam-
ics has long been used as a tool to describe particle pro-
duction in heavy-ion and in high-energy particle collisions
[1–3]. Recent analyses have shown that the statistical
models can indeed give a satisfactory description of the
multiplicities of most hadrons measured in A-A collisions
at Alternating Gradient Synchrotron (at BNL) and CERN
Super Proton Synchrotron (SPS) energies [4,5]. However,
the dynamics of particle equilibration and, in particular, of
chemical equilibration is still not well understood [6–8].

Within a statistical kinetic approach, particle produc-
tion is commonly described using the grand canonical en-
semble, where event-averaged multiplicities are controlled
by chemical potentials. In this description the net value
of a given U�1� charge (e.g., electric, baryon, strangeness,
charm, etc.) fluctuates. These fluctuations can be neglected
only if the particles carrying the charge in question are
abundant. In this case the charge will be conserved on
the average. In the opposite limit of rare particle produc-
tion, conservation laws must be implemented locally on an
event-by-event basis [1,2,9,10]; i.e., a canonical ensemble
must be used. The kinetic equations for the production
of strongly correlated particles were studied in the litera-
ture [11,12] with consideration of multiplicity fluctuations.
However, no complete solution has been obtained.

The local conservation of quantum numbers in the
canonical approach severely reduces the phase space avail-
able for particle production [1,2,5,9,10,13–15]. Recently,
it has been shown that the canonical statistical model
provides a good description of particle yields measured
in low-energy heavy-ion [16] and high-energy hadron-
nucleus, hadron-hadron, and e1e2 reactions [5,17,18].

In view of these results it is of particular importance to
consider a new approach that rigorously takes into account
the multiplicity fluctuations. In this Letter, we formulate
for the first time a kinetic theory for the time evolution of
particle distributions that allows us to investigate the ap-
0031-9007�01�86(24)�5438(4)$15.00
proach to the canonical chemical equilibrium, both the av-
erage multiplicity and its fluctuations. We consider the
multiplicity distribution of particles that carry the charges
corresponding to a U�1� internal symmetry. The kinetic
master equation is valid for arbitrary average particle mul-
tiplicities. It reproduces the canonical equilibrium solution
for rare particle production and, obviously, reduces to the
standard grand canonical rate equation for abundant par-
ticle production.

II. Rate equation.— In the standard formulation
[11,19–21], the rate equation for a binary process a1a2 !
b1b2 with a fi b is described by the following population
equation:

d�Nb1 �
dt

�
G
V

�Na1� �Na2� 2
L
V

�Nb1� �Nb2� , (1)

where G � �sGy� and L � �sLy� give the momentum-
averaged cross sections for the gain process a1a2 ! b1b2
and the loss process b1b2 ! a1a2, respectively. Nk repre-
sents the total number of particles k, and V is the proper
volume. Among such processes, a typical example is the
kaon production/annihilation via p1p2 $ K1K2. The
above rate equation, however, cannot be applied to the
situation where particle production is rare and is strongly
correlated by exact charge conservation.

To account for the correlation between the production/
annihilation of particles b1 and b2, let us define Pi,j
as the probability to find a number i of particle b1 and
a number j of particle b2 in an event. We also denote
as Pi the probability to find a number i of particle b in
an event. The average number of particles b per event is
then defined as

�Nb� �
X̀
i�0

iPi . (2)

We can now write the following general rate equation
for the average particle multiplicity [22]:
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d�Nb1 �
dt

�
G
V

�Na1� �Na2� 2
L
V

X
i,j

ijPi,j . (3)

Further, let particles b1 and b2 carry opposite units
of a charge corresponding to a U�1� internal symmetry
(strangeness in the case of kaons). Then the U�1� charge
neutrality of the system gives N � Nb1 � Nb2 . We have
then

Pi,j � Pidij ,X
i,j

ijPi,j �
X

i

i2Pi � �N2� � �N�2 1 �dN2� ,
(4)

where �dN2� represents the event-by-event fluctuation of
the number of b1b2 pairs. Note that we always consider
a1 and a2 particles abundant (e.g., pions) so that we can
neglect the event-by-event fluctuations of their multiplic-
ity and the change of their number due to the considered
processes.

Following Eqs. (3) and (4), the general rate equation for
the average number of b1b2 pairs can be written as

d�N�
dt

�
G
V

�Na1� �Na2� 2
L
V

�N2� . (5)

For abundant production of b1b2 pairs, where �N� ¿ 1,

�N2� � �N�2, (6)

and Eq. (5) obviously reduces to the standard form, i.e.,

d�N�
dt

�
G
V

�Na1� �Na2� 2
L
V

�N�2. (7)

However, for rare production of b1b2 pairs, where �N� ø
1, the rate equations (1) and (7) are no longer valid. In this
case, we have P1 ¿ Pi for i $ 2; thus following Eqs. (2)
and (4) we can write

�N2� � �N� , (8)

which reduces Eq. (5) to the following form:

d�N�
dt

�
G
V

�Na1��Na2� 2
L
V

�N�. (9)

Thus, in the limit �N� ø 1, the absorption term depends
on the pair number only linearly, instead of quadratically
for the limit �N� ¿ 1.

III. Equilibrium multiplicity and relaxation time.—To
illustrate the differences in the time evolution of particle
abundance, we consider the two limiting cases, �N� ¿ 1
and �N� ø 1, and present their equilibrium values and
relaxation times for the production of b1b2 pairs. As
an example, we consider a system at fixed tempera-
ture and volume and with no initial b1b2 pairs, i.e.,
�N� �t � 0� � 0.

In the limit when �N� ¿ 1, the standard Eq. (7) is valid
and has the following well-known solution:

�N�GC�t� � NGC
eq tanh�t�tGC

0 � , (10)
where the equilibrium value for the number of b1b2 pairs
NGC

eq and the relaxation time constant t
GC
0 are given by

NGC
eq �

p
e , tGC

0 �
V

L
p

e
, (11)

respectively, where

e � G�Na1 � �Na2 ��L . (12)

In the special case where particle momentum distribu-
tions are thermal, the gain �G� and loss �L� terms represent
just the thermal averages of the production and absorption
cross sections. From the definition for the thermal aver-
aged cross section [11] and neglecting quantum statistics
[23], we find

G
L

�
db1a

2
b1

K2�ab1�db2a
2
b2

K2�ab2�
da1a

2
a1

K2�aa1�da2a
2
a2

K2�aa2�
, (13)

where dk’s denote the degeneracy factors, ak � mk�T ,
and K2 represents the modified Bessel function. The equi-
librium value for the number of b1b2 pairs in Eq. (11) now
reads as

NGC
eq �

db1

2p2 VT3a2
b1

K2�ab1 � . (14)

Thus it is described by the grand canonical (GC) result
with vanishing chemical potential due to our requirement
of the (average) U�1� charge neutrality of the system.

In the opposite limit where �N� ø 1, the time evolution
is described by Eq. (9), which has the following solution:

�N�C�t� � NC
eq�1 2 e2t�t

C
0 � , (15)

with the equilibrium value and relaxation time given by

NC
eq � e, tC

0 �
V
L

. (16)

With a thermal momentum distribution the equilibrium
value of b1b2 pair multiplicity has the following form:

NC
eq �

∑
db1

2p2 VT3a2
b1

K2�ab1�
∏

?

∑
db2

2p2 VT3a2
b2

K2�ab2�
∏

.

(17)

We note that the above equation is formally equivalent to
the product of the multiplicity for particle b1 and that for
particle b2 in the limit of grand canonical equilibrium as
given by Eq. (14). This equation thus demonstrates the lo-
cality of the U�1� charge conservation. With each particle
b1, a particle b2 with the opposite charge is produced in
the same event in order to conserve charge locally. This is
the result expected from the canonical (C) formulation of
conservation laws [10,13,14].

We note that Eq. (17) is just the leading term in the ex-
pansion of the canonical result for the multiplicity of par-
ticles carrying the U�1� charges. The general expression is
known to have the following form [10,13,14]:
5439
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NC
eq � NGC

eq

I1�2NGC
eq �

I0�2NGC
eq �

, (18)

where NGC
eq is given by Eq. (14) and Ii’s are the modified

Bessel functions.
Comparing Eq. (11) and Eq. (16), we first find that, for

�N� ø 1, the equilibrium multiplicity in the canonical for-
mulation is much lower than what is expected from the
grand canonical result,

NC
eq � �NGC

eq �2 ø NGC
eq . (19)

This shows the importance of the canonical description of
charge conservation when the multiplicity of charged par-
ticles is small. We also note that the volume dependence
in the two cases is different. The particle density in the
GC (abundant) limit is independent of V , whereas in the
opposite canonical (rare) limit the density scales linearly
with V .

Second, the relaxation time for a canonical system is
far shorter than what is expected from the grand canonical
result,

tC
0 � tGC

0 NGC
eq ø tGC

0 , (20)

due to the small number of particles �NGC
eq ø 1�. For

example, the total number of produced kaons in Au 1 Au
collisions at 1 GeV�A is of the order of 0.02. Thus the
canonical relaxation time is a factor of 7 shorter than what
is expected from the grand canonical formulation.

We note from Eq. (5) that these two limits are essen-
tially determined by the size of �dN2�, the event-by-event
fluctuation of the number of b1b2 pairs. The grand
canonical results correspond to small fluctuations, i.e.,
�dN2���N�2 ø 1, while the canonical description is
necessary in the opposite limit.

IV. Master equation.— In this section, we formulate the
general evolution equation which is valid for an arbitrary
value of �N�. It is a master equation for Pn�t�, the proba-
bility of finding n pairs of b1b2 at time t. This probabil-
ity increases with time due to transitions from n 2 1 and
n 1 1 states to the n state, while it also decreases due to
transitions from the n state to n 2 1 and n 1 1 states. The
transition probability n ! n 1 1 per unit time due to pair
creation is G�Na1 � �Na2��V and the transition probability
n ! n 2 1 due to pair annihilation is n2L�V . Therefore,
the master equation set has the form

dPn

dt
�

G
V

�Na1� �Na2� �Pn21 2 Pn	

2
L
V

�n2Pn 2 �n 1 1�2Pn11	 , (21)

where n � 0, 1, 2, 3, . . . . Multiplying the above equa-
tion by n and summing over n, one recovers Eq. (5), the
general rate equation for the time evolution of the average
number of b1b2 pairs. However, the master equation (21)
contains much more information than the rate equation (5).
It contains enough information to solve for the evolution
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of �N� (and all moments of N) for arbitrary �N�. For ex-
ample, one can also obtain the time evolution of particle
fluctuations, �dN2�, which are of physical importance for
rarely produced particles.

We can convert the iterative equations (21) for Pn’s into
a partial differential equation for the generating function

g�x, t� �
X̀
n�0

xnPn�t� . (22)

Multiplying Eq. (21) by xn and summing over n, we find

≠g�x, t�
≠t

�
L
V

�1 2 x� �xg00 1 g0 2 eg� , (23)

where g0 � ≠g�≠x. Note that the g�1, t� does not change
with time, which is equivalent to the conservation of total
probability evident in Eq. (21).

The equilibrium solution, geq�x�, thus obeys the follow-
ing equation:

xg00
eq 1 g0

eq 2 egeq � 0 . (24)

By variable substitution �x � y2��4e�	 this equation can
be reduced to the Bessel equation. The solution that is
regular at x � 0 [since g�0� � P0 # 1] is given by

geq�x� �
1

I0�2
p

e �
I0�2

p
ex � , (25)

where the normalization is fixed by g�1� �
P

Pn � 1.
The equilibrium probability distribution Pn can now be

found from Eqs. (22) and (25) as

Pn,eq �
en

I0�2
p

e � �n!�2 , (26)

and the value of the average number of b1b2 pairs per event
at equilibrium is given by

�N�eq � g0
eq�1� �

p
e

I1�2
p

e �
I0�2

p
e �

, (27)

which obviously coincides with the expected result for
particle multiplicity in the canonical ensemble given
by Eq. (18) and also reduces to the results for the two
limiting cases in Sec. III. One can similarly formulate
the master rate equation for particle distributions without
the constraint by U�1� charge conservation as in a grand
canonical system. In this case, the quadratic dependence
on n in the second term of Eq. (21) will be replaced by
a linear dependence and the equilibrium solution will be
a Poisson distribution.

V. Conclusions.—We have formulated the kinetic mas-
ter equation for strongly correlated production of particles,
where the correlation is due to local charge conservation
required by a U�1� internal symmetry. Our general rate
equation is valid for an arbitrary value of �N�; thus it re-
duces to the grand canonical results for large �N� and to
the canonical results for small �N�. Our equation provides
a generalization of the standard rate equation beyond the
grand canonical limit. We have shown that for rare particle
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production the equilibrium abundance is much smaller and
the relaxation time is much shorter than expected from the
standard rate equation. For abundant particle production,
where the standard rate equation applies to first order, one
can use the general rate equations to study finite-size cor-
rections to the grand canonical results.

Our results could be of importance in the description
and understanding of equilibration phenomena and equi-
librium properties of partonic or hadronic matter created in
heavy-ion collisions. For example, it could provide insight
into the equilibration time of strange particles produced
at GSI Heavy Ion Synchrotron (SIS) or open charm and
charmonium productions at SPS and higher energies. It
may also be meaningful for transport model studies of rare
particle production, especially the perturbative procedure
for rare processes [24], where the local charge conservation
requires that the production probability should be assigned
to the pair instead of to each particle separately. Quanti-
tative calculation on strangeness chemical equilibration at
SIS energies is under way.
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