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Magnetic Tension and the Geometry of the Universe
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The vector nature of magnetic fields and the geometrical interpretation of gravity introduced by general
relativity guarantee a special coupling between magnetism and spacetime curvature. This magneto-
geometrical interaction effectively transfers the tension properties of the field into the spacetime fabric,
triggering a variety of effects with profound implications. Given the ubiquity of magnetic fields in
the universe, these effects could prove critical. We discuss the nature of the magnetic-field–curvature
coupling and illustrate some of its potential implications for cosmology.
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Despite the widespread presence of magnetic fields in
the universe [1], studies of their potential cosmological
implications remain relatively underdeveloped. It has long
been thought, however, that magnetic fields might have
played a role during the formation and the evolution of
the observed large scale structure [2]. Recently, this idea
has received renewed interest manifested by the increasing
number of related papers that have appeared in the litera-
ture [3,4]. Nevertheless, there are still only a few fully rela-
tivistic approaches available. Most treatments are either
Newtonian or semirelativistic. As such, they are bound
to exclude certain features of the magnetic nature. Two
key features are the vector nature of the field and the ten-
sion properties of magnetic force lines. In general relativ-
ity vector fields have quite a different status than ordinary
scalar sources, such as the energy density and pressure of
matter. The geometrical nature of Einstein’s theory guar-
antees that vectors are directly coupled to the spacetime
curvature. This special interaction is manifested in the
Ricci identity

2=�a=b�Bc � RabcdBd , (1)

applied here to the magnetic vector Ba, where Rabcd is
the spacetime Riemann tensor. The Ricci identity plays a
fundamental role in the mathematical formulation of gen-
eral relativity. Essentially, it is the definition of spacetime
curvature itself. The Ricci identity also leads to a direct
coupling between magnetism and spatial geometry. In-
deed, projecting Eq. (1) into the instantaneous rest space
of a comoving observer we arrive at

2D�aDb�Bc � 22vabhd
c

�Bd 1 RdcbaBd . (2)

In the above Da is the projected covariant derivative opera-
tor, vab is the vorticity tensor, and hab , Rabcd are, respec-
tively, the metric and the Riemann tensor of the observer’s
rest space. Note that the overdot indicates differentiation
along the observer’s world line. The vorticity term appears
because generally the observer’s motion is not hypersur-
face orthogonal. For our purposes, however, the key quan-
tity is the last one on the right-hand side of Eq. (2). Its
0031-9007�01�86(24)�5421(4)$15.00
presence illustrates the direct coupling between magnetic
fields and spatial geometry. We call this special interac-
tion the magnetocurvature coupling. This coupling goes
beyond the standard interplay between matter and geome-
try as introduced by the Einstein field equations. In fact, it
makes the magnetic field an inseparable part of the space-
time fabric by effectively transferring its properties to the
spacetime itself. The key property appears to be the ten-
sion of the magnetic lines of force.

Magnetic fields transmit stresses between regions of ma-
terial particles and fluids. The field exerts an isotropic
pressure in all directions and carries a tension along the
magnetic lines of force. Each small flux tube behaves like
an infinitely elastic rubber band, while neighboring tubes
expand against each other under their own pressure. Equi-
librium exists only when a balance between pressure and
tension is possible. To unravel these tension properties, let
us consider a pure magnetic field. Its energy-momentum
tensor decomposes as

Tab �
1
2B2uaub 1

1
6B2hab 1 Pab , (3)

where B2 � BaBa and Pab � �B2�3�hab 2 BaBb .
Thus, the field behaves as an imperfect fluid with energy
density rm � B2�3, isotropic pressure pm � B2�6, and
anisotropic pressure Pab . Note that, in the absence of
electric fields, the electromagnetic Poynting vector is zero
and Eq. (3) contains no energy-flux vector. The tension
properties of the field are incorporated in the symmetric
trace-free tensor Pab . They emerge when we take the
eigenvalues of Pab orthogonal and along the direction of
the magnetic force lines. Orthogonal to Ba one finds two
positive eigenvalues equal 1�3 each. Thus, the magnetic
pressure perpendicular to the field lines is positive, re-
flecting their tendency to push each other apart. In the Ba

direction, however, the associated eigenvalue is 22�3 and
the magnetic pressure is negative. The minus sign reflects
the tension properties of the field lines and their tendency
to remain as “straight” as possible.

The magnetic effects on the fluid propagate through Eu-
ler’s formula. For a barotropic, infinitely conductive, mag-
netized medium the nonlinear Euler equation is [4]
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�r 1 p 1
2
3B2�Aa � 2c2

s Dar 2 ´abcBb curlBc

2 AbPba , (4)

where Aa is the fluid 4-acceleration c2
s � �p� �r is the sound

speed squared, and ´abc is the spatial alternating tensor.
The projected gradient of Eq. (4) facilitates a more detailed
study of the magnetic behavior. In particular, it separates
the effects of the field’s tension from those of the ordinary
(i.e., the positive) magnetic pressure. To illustrate how
and also to reveal the role of the spacetime curvature, we
consider a weakly magnetized Bianchi I background. Its
generic anisotropy will help us to identify the magnetic
tension contributions easier. Employing Eq. (2) we arrive
at the linear expression [5]

r�1 1 w�DbAa � 2c2
s DbDar 2

c2
s

r�1 1 w�
BaBcDbDcr

1 BcDcDbBa 2
1
2DbDaB2

2
4
3QBaBcvbc 1 RacbdBcBd , (5)

with w � p�r. Let us concentrate on the four magnetic
terms at the end of Eq. (5). The first two also appear
in Newtonian studies, whereas the last two are the rela-
tivistic corrections. Since DaBa � 0 � BaBbvab , the
first standard term and the first of the relativistic cor-
rections are irrelevant for our purposes. Here we focus
upon the magnetocurvature term at the end of Eq. (5),
where the spatial curvature tensor is twice contracted
along the field lines. The directional dependence on
Ba ensures that RacbdBcBd also conveys the magnetic
tension effects. This is also implied by the sign difference
between the magnetogeometrical term and the standard
gradient DbDaB2, which carries the effects of the ordi-
nary magnetic pressure. Note that the magnetocurvature
stress in Eq. (5) is always normal to the field lines, as the
symmetries of the Riemann tensor confirm. Also, it closely
resembles the classical curvature stress exerted by distorted
magnetic field lines (see, e.g., [6]). This resemblance
becomes more apparent when we linearize (5) about a
Friedmann-Robertson-Walker (FRW) background [see
Eqs. (7) and (8)]. The difference is that, in the relativistic
case, the distortion of the field pattern is triggered by the
spacetime geometry itself. In fact, the magnetocurvature
term in Eq. (5) effectively injects the tension properties of
the field into the spacetime fabric. The implications are
widespread and far from trivial.

Consider a general spacetime filled with a magnetized,
highly conductive, perfect fluid. Its volume expansion is
governed by the nonlinear Raychaudhuri equation [4]

1
3Q2q �

1
2 �r 1 3p 1 B2� 1 2�s2 2 v2�

2 =aAa 2 L , (6)

where q is the deceleration parameter, s2 and v2 are the
shear and vorticity magnitudes, respectively, and L is the
cosmological constant. The state of the expansion is deter-
mined by the sign of the right-hand side of Eq. (6). Posi-
tive terms decelerate the universe while negative ones lead
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to acceleration. Clearly, conventional matter and shear ef-
fects slow the expansion down. On the other hand, vor-
ticity and a positive cosmological constant accelerate the
universe. Hence, every term on the right-hand side of
Eq. (6) has a clear kinematical role with the exception of
=aAa. The latter can be either positive or negative, de-
pending on the specific form of the 4-acceleration. In
our case Aa obeys the nonlinear Euler formula given by
Eq. (4). In a weakly magnetized, slightly inhomogeneous
and anisotropic, almost-FRW universe Eqs. (4) and (6) lin-
earize to give [7]

1
3Q2q � 1

2r�1 1 3w� 1
c2

s D

�1 1 w�a2 1
c2

aB

2�1 1 w�a2

2
2kc2

a

�1 1 w�a2 2 L (7)

on using the trace of (5). In the above D and B de-
scribe scalar perturbations in the fluid and the magnetic
energy densities, respectively, c2

a � B2�r is the square of
the Alfvén speed, k � 0, 61 is the background curvature
index, and a is the scale factor. Given that in the linear
regime the mean values of D and B are zero, one expects
that on average Eq. (7) looks like

1
3Q2q �

1
2r�1 1 3w� 2

2kc2
a

�1 1 w�a2 , (8)

where L � 0 from now on. Note the magnetocurvature
term on the right-hand side which results from the cou-
pling between magnetism and geometry as manifested in
Eq. (2). This term affects the expansion in two completely
different ways depending on the sign of the background
curvature. In particular, the magnetogeometrical effects
slow the expansion down when k � 21 but tend to ac-
celerate the expansion if k � 11. Such a behavior seems
odd, especially since positive curvature is always associ-
ated with gravitational collapse. The explanation lies in the
elastic properties of the field lines. As curvature distorts
the magnetic force lines their tension backreacts giving rise
to a restoring magnetocurvature stress [5]. The magnetic
backreaction has kinematical, dynamical, as well as geo-
metrical implications. In Eq. (8), for example, the tension
of the field adjusts the expansion rate of the universe to
minimize the kinematical effects of curvature. As a result
the expansion rate is brought closer to that of a flat FRW
model. Overall, it looks as though the elastic properties
of the field have been transferred into space. According to
Eq. (8), the magnetocurvature effects also depend on the
material component of the universe. When dealing with
conventional matter (i.e., for 0 # w # 1) the most intrigu-
ing cases occur in positively curved spaces [7]. In particu-
lar, when w � 1 (i.e., for stiff matter) the Alfvén speed
grows as c2

a ~ a2 and the magnetocurvature term in Eq. (8)
becomes time independent. In this case the field acts as
an effective positive cosmological constant. For radiation
and dust, on the other hand, c2

a � const and c2
a ~ a21, re-

spectively. In these cases the magnetocurvature term is
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no longer time independent but drops with time mimick-
ing a time-decaying quintessence. The coupling between
magnetism and geometry also means that even weak mag-
netic fields can have a strong impact if the curvature is
strong. To demonstrate how this might happen, consider
a weakly magnetized spatially open cosmology filled with
nonconventional matter (i.e., k � 21 and 21 # w , 0).
Scalar fields, for example, can have an effective equation
of state that satisfies this requirement. Such models al-
low for an early curvature dominated regime with V ø 1.
Given that r ~ a23�11w� and c2

a ~ a2113w , the magne-
tocurvature term in Eq. (8) can dominate the early expan-
sion, even when the field is weak, if 21 # w # 21�3. In
this case the accelerated inflationary phase, which other-
wise would have been inevitable, is suppressed. Instead of
inflating the magnetized universe remains in a state of de-
celerated expansion. For w � 21, in particular, the mere
presence of the field can inhibit the de Sitter inflationary
regime if V , 0.5 [7]. This result has two implications.
First, it challenges the widespread perception that mag-
netic fields are relatively unimportant for cosmology. Even
weak fields can play a decisive role when the curvature is
strong. Second, it casts doubt on the efficiency of standard
inflation in the presence of primordial magnetism.

Let us now turn our attention to geometry and exam-
ine the implications of the magnetic tension for propa-
gating gravitational radiation. To begin with, recall the
tendency of the field lines to remain straight. If this prop-
erty were transferred to the spacetime, we would expect
to see a suppressing effect on gravity waves propagating
through a magnetized region. Such damping should ap-
pear as a decrease in the wave’s energy density and am-
plitude. To put this idea to the test we consider linear
gravitational waves in a weakly magnetized almost-FRW
universe, filled with a highly conductive medium. We also
assume that the background spatial sections are flat and
we address superhorizon scales only. Covariantly, gravity
waves are described via the electric �Eab� and the mag-
netic �Hab� parts of the Weyl tensor [8]. Their magnitudes,
E2 � EabEab�2 and H2 � HabHab�2, provide a measure
of the wave’s energy density and amplitude. Given that
Hab � curlsab , we can simplify the problem by replac-
ing the magnetic Weyl tensor with the shear. Note that
the field couples to gravitational radiation directly via the
anisotropic magnetic stresses, which affect the propagation
of both Eab and sab [9]. Having set the constraints that
isolate tensor perturbations in a magnetized universe (see
[9]), we arrive at the system

�E2�. � 22QE2 2
1
2r�1 1 w�X 2

1
2QB2E ,

�s2�. � 2
4
3Qs2 2 X 2

1
2B2S ,

�X � 2
5
3QX 2 2E2 2 r�1 1 w�s2

2
1
2B2E 2

1
2QB2S ,

(9)

�E � 2QE 2
1
2r�1 1 w�S 2

1
3QB2,

�S � 2
2
3QS 2 E 2

1
3B2,
with B2 ~ a24, X � Eabsab , E � Eabhahb , and S �
sabhahb �ha � Ba�

p
B2 �. The last two scalars are re-

lated via the Gauss-Codacci equation by

E �
1
3QS 1

1
3B2 1 R , (10)

where R � �R�ab� 2 �R�3�hab�hahb describes spatial
curvature distortions in the direction of the magnetic field
lines. For radiation, the late-time solution for E2 is [9]

E2 � 4
9

∑
E2

0 1
s

2
0

4t2
0

2
X0

2t0

∏ µ
t0

t

∂2

2
2
9 � 1

6B2
0 1 R0�B2

0

µ
t0

t

∂2

, (11)

with an analogous result for dust [9]. Note that the term
in square brackets determines the magnetic-free case. Ac-
cording to Eq. (11), the field leaves the evolution rate of
E2 unchanged but modifies its magnitude. The magnetic
impact is twofold. There is a pure magnetic effect, inde-
pendent of the spatial curvature, which always suppresses
the energy of the wave. It becomes apparent when we set
R0 � 0 in Eq. (11). This effect is the direct result of the
magnetic tension. As the wave propagates it distorts the
field lines which backreact by smoothing out any ripples
in the spacetime fabric. The magnetically induced damp-
ing is proportional to the ratio B2

0�E0. Given the inherent
weakness of gravitational radiation, the magnetic effects
are potentially detectable even when relatively weak fields
are involved. Solution (11) also reveals a magnetocurva-
ture effect on gravitational radiation. This is encoded in the
R0 term and depends entirely on the spatial curvature. For
R0 . 0, namely, when the curvature distortion along the
field lines is positive, the pure-magnetic damping is further
enhanced. On the other hand, the suppressing effect of the
field weakens if R0 , 0. In fact, the field will increase
the energy of the wave provided that R0 , 2B2

0�6. These
magnetogeometrical effects get stronger with increasing
curvature distortion. Let us take a closer look at them.
According to Eq. (10), the scalar R describes distortions
in the local spatial curvature generated by the propagating
magnetized gravity wave. Clearly, the magnetogeometrical
term in Eq. (11) modifies the energy density of the wave
in a way that always minimizes such curvature distortions.
In other words, the pure magnetocurvature effect tends to
preserve the spatial flatness of the background universe.
Earlier, an analogous magnetocurvature effect was also ob-
served on the expansion rate of spatially curved FRW uni-
verses. This pattern of behavior raises the question as to
whether it reflects a generic feature of the magnetic nature.
More specifically, one wonders if the tension properties of
the magnetic force lines and the coupling between mag-
netism and spacetime curvature imply an inherent “pref-
erence” of the field for flat geometry. Let us take a more
direct look at this possibility. Consider an almost-FRW
magnetized universe and assume that the background spa-
tial geometry is Euclidean. If R is the Ricci scalar of the
perturbed spatial sections, then using the trace of Eq. (5)
we obtain [4]
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�R � 2
2
3

∑
1 1

2c2
a

3�1 1 w�

∏
QR 1

4c2
s Q

3�1 1 w�a2 D

1
2c2

aQ

3�1 1 w�a2 B . (12)

As expected, the expansion dilutes curvature distortions,
caused by fluctuations in the fluid and the magnetic en-
ergy densities. Interestingly, the field also enhances the
smoothing effect of the expansion. This effect results from
the tension properties of the magnetic force lines, which
tend to suppress curvature distortions. Given the weakness
of the field (recall that c2

a ø 1), the magnetically induced
smoothing is negligible compared to that caused directly
by the expansion. Nevertheless, the tendency of the field
to maintain the original flatness of the spatial sections is
quite intriguing. It seems to support the idea that, given
their tension properties and their direct coupling to curva-
ture, magnetic fields might indeed have a natural prefer-
ence for flat spaces.

The magnetocurvature effects presented here reveal a
side of the magnetic nature which as yet remains unex-
plored. They derive from the vector nature of the field and
from the geometrical approach to gravity adopted by gen-
eral relativity. The latter allows a direct coupling between
magnetism and curvature which effectively transfers the
magnetic properties into space itself. The tension of the
field lines appears to be the key property. Kinematically
speaking, the magnetocurvature effects tend to accelerate
spatially closed regions, while they decelerate those with
open spatial curvature. Crucially, if the curvature input is
strong, the overall impact can also be strong even when the
field is weak. This challenges the widespread belief that,
due to their perceived weakness, magnetic fields are rel-
atively unimportant for cosmology. Inflationary scenarios
allow for a strong-curvature regime during their very early
stages. An initial curvature dominated epoch has never
been considered a serious problem for inflation given the
vast smoothing power of the accelerated expansion. It is
during these early stages, however, that a weak magnetic
presence is found capable of suppressing the accelerated
phase in spatially open “inflationary” models. Such a result
casts doubt on the efficiency, and potentially on the viabil-
ity, of standard inflation in the presence of primeval mag-
netism. In fact, every cosmological model that allows for
a strong-curvature regime and a weak magnetic field could
be vulnerable to these magnetocurvature effects. The cou-
pling between magnetism and spacetime curvature has also
intriguing geometrical implications. It modifies the expan-
sion of spatially closed, and open, FRW universes bring-
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ing the rate closer to that of a flat Friedmannian model.
The tension of the field lines is found to suppress gravi-
tational waves propagating through a magnetized region.
Moreover, the combined magnetocurvature effects smooth
out perturbations in the spatial curvature of a flat FRW
universe and modulate the energy of gravity waves as if
to preserve the background flatness. In short the magne-
tized space seems to react to curvature distortions showing,
what one might interpret as, a preference for flat geometry.
Given the ubiquity of magnetic fields in the universe, this
unconventional behavior deserves further investigation as
it could reflect a deeper interconnection between electro-
magnetism and geometry. This in turn could drastically
change our views on the role of cosmic magnetism not
only in cosmology but also in astrophysics. It is the aim of
this Letter to bring these issues to light and draw attention
to their potential implications.
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