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Coupled Normal Heat and Matter Transport in a Simple Model System
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We introduce the first simple mechanical system that shows fully realistic transport behavior while
still being exactly solvable at the level of equilibrium statistical mechanics. The system is a Lorentz gas
with fixed freely rotating circular scatterers which scatter point particles via perfectly rough collisions.
Upon imposing either a temperature gradient and/or a chemical potential gradient, a stationary state is
attained for which local thermal equilibrium holds. Transport in this system is normal in the sense that
the transport coefficients which characterize the flow of heat and matter are finite in the thermodynamic
limit. Moreover, the two flows are nontrivially coupled, satisfying Onsager’s reciprocity relations.
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The phenomenological equations of irreversible thermo-
dynamics, which describes diffusion, heat conduction, and
viscosity among a host of other phenomena, are of great
significance in many fields. To link these phenomena to
the underlying microscopic dynamics is, however, highly
nontrivial and the results so far have not been conclusive.
From a mathematically rigorous point of view, very few
results have been obtained [1]. From the numerical point
of view, the systems considered thus far are either too com-
plicated to shed much light upon the problem, or fail to re-
produce the macroscopic phenomenology. Indeed, to our
knowledge, the validity of Fourier’s law has been proven
analytically only for a specific model in the limit of infinite
dilution with finite mean free path [2,3]. There have also
been attempts to link transport phenomena to the chaotic
properties of the underlying classical dynamics [4], and a
connection between the rate of entropy production and the
rate of contraction of phase space volume has been pointed
out [5]. Further results have also been obtained concerning
energy transport in the Lorentz gas [6]. However, as was
shown in [7], this last system does not satisfy local thermal
equilibrium (LTE), which is a fundamental assumption of
irreversible thermodynamics. It is therefore not clear what
precise meaning should be attached to Fourier’s law in this
situation. Numerically, attempts have been made, on one
side, through the simulation of realistic many-body systems
satisfying a thermostatted (non-Hamiltonian) dynamics
[8]. These simulations have indeed been able to reproduce
nontrivial transport phenomena. However, such studies do
not provide a detailed understanding of the microscopic
processes involved due to the excessive complexity of
the system. The other numerical approach involves the
study of transport in “simple systems.” Examples of these
include chains of anharmonic oscillators [9], for which
Fourier’s law does not hold; Lorentz gases [6], which, as
mentioned above, do not satisfy LTE; and the so-called
ding-a-ling and ding-dong models [10,11], which indeed
yield normal heat transport, but have geometric constraints
that make even their equilibrium properties a complicated
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affair and cannot be generalized, retaining their simplicity,
to obtain the coupled heat and matter transport commonly
found in real systems. Under these circumstances, the
minimal ingredients required in the microscopic physics
of a system to attain normal heat conduction in low
dimensions are presently still under discussion [1,12,13].

In this work we introduce the first simple reversible
Hamiltonian model system whose steady state is well
described by the hypothesis of LTE and supports both
normal heat and matter transport. These are nontrivially
coupled, satisfying Onsager’s reciprocity relations. Fur-
thermore, this system has the advantage that its equilib-
rium properties are trivial since its description reduces to
that of ideal gases. This makes our model an ideal testing
ground for theories linking microscopic mechanical prop-
erties to transport phenomena. Moreover, this model can
be easily modified to study other physical problems from a
microscopic approach, such as transport in heterogeneous
systems [14] and the effects of applied fields.

Our model consists of noninteracting point particles of
mass m scattered by an array of freely rotating circular
scatterers of radius R with a finite moment of inertia Q.
The only relevant adimensional parameter characterizing
the system is

h �
Q

mR2 , (1)

which determines the amount of energy transfer between
disks and particles in a collision. The scattering proceeds
according to the rules characterizing perfectly rough col-
lisions, designed to conserve energy and angular momen-
tum. They are given by the following prescription: the
normal velocity yn of the particle changes sign, whereas
the tangential velocity yt of the particle and the angular
velocity v of the disk are transformed as follows:

y0
n � 2yn, y0

t � yt 2
2h

1 1 h
�yt 2 Rv� ,

Rv0 � Rv 1
2

1 1 h
�yt 2 Rv� .

(2)
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These rules define a deterministic, time-reversible, and
canonical transformation at each collision. For finite val-
ues of h, particles in the system may exchange energy
among each other through the disks, even though they
do not interact directly. It is precisely this disk-mediated
energy exchange which permits the systems to reach ther-
modynamical equilibrium without the necessity of any ad-
ditional thermostat (a similar idea was proposed in [15] as
a model of a deterministic thermostat). It should be noted
that both the limits h ! 0 and h ! ` are exceptional:
In the former case the particle dynamics reduces to that of
normal elastic scattering by a hard disk, which is the usual
Lorentz gas model; in the latter, the state of rotation of the
disks is unaffected by the collisions. Thus, in both lim-
its the energy-mediating effect of the disks is suppressed
and thermodynamical equilibrium is not reached. In the
following, unless the contrary is explicitly stated, we shall
always be dealing with the case h � 1, since that is the
value of h for which equilibration is most efficient. We
shall also always set m and R to 1.

A peculiarity of this system is that it is homogeneous,
i.e., it has no proper energy scale, or, equivalently, no
proper time scale. Thus all energies and temperatures re-
ported in this work are rescaled to the lower nominal tem-
perature of the baths.

The geometric disposition of the scatterers is indicated in
Fig. 1. The centers of the scatterers are fixed on a triangu-
lar lattice, along a narrow channel with periodic boundary
conditions in the vertical direction. At the ends, the walls
are used to fix both the temperature T and the quantity
m�T , where m is the chemical potential. This is achieved
by ensuring that each particle that hits the right or the
left wall is absorbed with probability 1 2 exp�21�jynj�,
where yn is the normal component to the wall of the par-
ticle velocity. Otherwise, the particle is reflected with a
velocity chosen from

Pn�yn� �
1
T

jynj exp

µ
2

y2
n

2T

∂
,

Pt�yt� �
1

p
2pT

exp

µ
2

y2
t

2T

∂
,

(3)

FIG. 1. Schematic illustration of the scatterer geometry: the
scatterers are disposed on a triangular array with finite horizon to
avoid infinitely long trajectories. For matters of convenience, in
this work the separation between scatterers has been set to have
the critical horizon. Periodic boundary conditions are used in the
vertical direction. To avoid spurious effects arising from multiple
scattering off the same disk, we have put two disks on each ver-
tical. To study the dependence with system size, the length L of
the sample is varied. The quoted length is the number of disks.
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where yn and yt are, respectively, the normal and tangen-
tial components of the velocity with respect to the wall, and
T is the nominal temperature of the wall. Additionally, the
walls emit particles with velocities distributed as in (3), at
a velocity dependent rate given by g�1 2 exp�21�jynj��.
Here, g determines the nominal value of the chemical po-
tential at the walls through m � T ln�g�T 3�2�. Details will
be given in a forthcoming publication [16]. At the level of
equilibrium statistical mechanics the system is an ideal gas
mixture, with the disks having 1 degree of freedom and
the particles 2. We have verified that our model reaches an
equilibrium state fulfilling the equipartition theorem in the
microcanonical, canonical, and grand canonical ensembles
of equilibrium statistical mechanics. Further, the tempera-
ture and chemical potential at which the system equili-
brates coincides with the nominal values at the walls in
the canonical and grand canonical cases. Finally, when
the system is subjected to a weak temperature or chemi-
cal potential gradient, it reaches a well-defined stationary
state after a relaxation time that depends on the length of
the system and on the gradients themselves. To show that
LTE is indeed achieved in the stationary state attained by
our system, we display in Fig. 2 a typical realization of the
energy distribution function Px�´� of the particles as they
cross a narrow slab centered around position x for three
different positions. At each position, Px�´� is consistent
with the Boltzmann distribution. Further, if we determine
the temperature T �x� by a fit of the Px�´� to the Boltzmann
distribution, the agreement with the expected linear tem-
perature profile in the system is satisfactory and coincides
with the average energy of the particles measured at that
position; see the inset of Fig. 3. Thus, the identification
of the average particle energy with the local temperature
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FIG. 2. Semilogarithmic plot of the particle’s energy distribu-
tion Px�´� at different positions along a channel of length 30 with
an end-to-end temperature difference DT � 1�7 and D�m�T � �
20.2002. The different curves correspond to a fit to a Boltzmann
distribution for each position. From these fits, we obtain the
temperatures T � 1.0193 at x � 3 (circles), T � 1.0693 at x �
13 (squares), and T � 1.1335 at x � 27 (triangles). The curves
have been rescaled for clarity.
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FIG. 3. Temperature profile for the simulation described in
Fig. 2. The solid line corresponds to the particle temperature
along the channel while the open circles are the temperature
of the disks, averaged over 500 realizations. In the inset the
particle temperature profile (solid line) is compared with the
temperatures obtained from the fits to the Boltzmann distribution
of Px�´� in Fig. 2 (open squares).

is justified in this system. In Fig. 3 we show the tempera-
ture profiles of both particles and disks, which are found
to be linear. The agreement between both values indicates
that disks equilibrate with the particles locally along the
channel. In the inset, the temperatures obtained in Fig. 2
for three different positions are compared with T �x�, mea-
sured as the average energy. The agreement reinforces the
conclusion that the system establishes a LTE in its steady
state. Note again that T �x� reaches the nominal tempera-
tures specified by the walls at both ends. This is in contrast
to what is observed in several other models for heat con-
duction previously proposed [9,11,12]. Moreover, in sim-
ulations in which we impose a temperature gradient but the
same value of m�T on both walls, we find that r�x��T �x�
is constant along the channel, confirming that the particles
in the system can be described as a two-dimensional ideal
gas which is locally at equilibrium.

From the general theory of irreversible processes, to
linear order the heat and particle currents Ju and Jr can
be written as follows (see, e.g., [17]):

Ju � Luu=
1
T

2 Lur=
m

T
,

Jr � Lru=
1
T

2 Lrr=
m

T
,

(4)

and the Onsager reciprocity relations read in this case

Lur � Lru . (5)

The central feature of the model is that its transport prop-
erties are normal, meaning that the various transport coef-
ficients appearing in (4) do not depend on the length of the
system, and are, thus, well defined in the thermodynamical
limit. In Fig. 4 we show the dependence of the currents on
the length L of the system, for a typical realization. The
1�L dependence observed confirms that transport is normal.

In order to obtain the value of the coefficients in (4), it
is enough to perform two simulations: Fixing the value
of =T and setting =�m�T � � 0 yields Luu and Lru while
setting =T � 0 and fixing =�m�T � gives Lur and Lrr .

We have performed simulations with temperature and
chemical potential differences up to 20% of the minimal
nominal values at the walls, and in all cases we have found
normal transport consistent with (5). For example, in a
simulation in which a temperature difference of DT �
1�14 and L � 30 at fixed m�T � 25.01, averaged over
500 realizations, we found that after the steady state has
been reached, both a heat current and a particle current
were driven by the temperature gradient. The measured
value for Lru in this case was 0.0054 6 0.000 13. This
implies, through (5), that a heat current will be driven
by a gradient in m�T at fixed T , as is indeed observed.
In the complementary simulation with T constant, where
D

m

T � 20.06, we found Lur � 0.0055 6 0.000 13, thus
confirming (5) to within our numerical accuracy.

As a consistency check, we have also studied a “canoni-
cal” situation, in which we supressed absorption and emis-
sion of particles at the walls. In this situation there is no
flow of matter in the steady state. The relationship between
heat flow and temperature gradient becomes Ju � k=T ,
with k given by the following expression:

k �
LuuLrr 2 LurLru

T2Lrr

. (6)

This relationship was found to hold to good accuracy, thus
confirming the validity of our “grand canonical” simula-
tions by which the L’s were evaluated.
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FIG. 4. Size dependence of the heat and matter currents for
simulations with a fixed temperature difference, DT � 1�7, and
m�T constant. The dotted lines correspond to 1�L scaling. From
the agreement it follows that the transport coefficients do not
depend on the size of the system.
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We argue that the coupling between the two currents is
nontrivial in the following sense: in a canonical simulation,
the simplest assumption for the dependence of the density
on the position is that the orbit of each particle covers
the sample uniformly. Then the local temperature merely
determines the speed at which the orbit is being traversed.
This would imply that in such a simulation, the particle
density scales inversely with the average velocity that is

r�x�T �x�1�2 � const. (7)

In terms of the transport coefficients defined in (4),
Eq. (7) is equivalent to Lru � �d 1 1�TLrr�2, where d is
the dimension of the system. This relation corresponds to a
system for which all transport arises from uncorrelated Mar-
kovian motion of the particles, as in the Knudsen gas [17].

However, Eq. (7) does not hold in our system as we
always find a systematic spatial variation in this quantity,
the size and sign of which depend on the value of h.
Thus, our system cannot be accurately described in this
simple manner. The correct description is, as in all systems
showing realistic transport properties, an open problem.

In summary, we have introduced a reversible Hamilto-
nian system to study transport, with the following desirable
properties: Its statistical mechanics is trivial, reducing to
that of ideal gases. In the steady state it is well described by
the hypothesis of local thermal equilibrium. Its transport
properties are normal and it naturally supports coupled
matter and heat transport for which Onsager’s reciprocity
relations are satisfied to within numerical accuracy. This
coupling is nontrivial in that it does not reduce to a simple
velocity scaling. In view of these properties, we believe
that this model provides an ideal framework from which
theories for the emergence of macroscopic transport in
out-of-equilibrium conditions can be constructed and/or
tested. Furthermore, the model opens the possibility to
study other phenomena such as thermal junctions (and
other kinds of inhomogeneities) by changing the size or
moment of inertia of the disks, Joule heating by applying
an electric field, broken time reversal symmetry by apply-
ing magnetic fields, etc. [18]. Research into some of these
extensions is currently underway [16].
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