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Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime,
Tonks-Girardeau Regime, and In Between
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We present a quantitative analysis of the experimental accessibility of the Tonks-Girardeau gas in
present-day experiments with cigar-trapped alkalis. For this purpose we derive, using a Bethe ansatz
generated local equation of state, a set of hydrostatic equations describing one-dimensional, d-interacting
Bose gases trapped in a harmonic potential. The resulting solutions cover the entire range of atomic
densities.
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Physics of trapped atomic gases attracted an enormous
attention from both experimentalists and theorists in the
past decade [1,2]. All atomic systems experimentally ac-
cessed so far can be well understood within a so-called
mean-field picture, where the atom-atom correlations are
weak and a particular atom can be effectively viewed as
moving in a mean-field created by others and unaffected
by the presence of the probe atom. Small deviations from
the mean-field predictions can be calculated using the Bo-
goliubov approximation [3]. An interesting question arises
as to what happens beyond the scope of the mean-field be-
havior. For the three-dimensional systems the far-beyond-
mean-field regime has neither been reached experimentally
(the JILA experimental group has made significant prog-
ress towards this goal [4]) nor understood theoretically.

For quasi-one-dimensional systems (cigar-shaped traps)
the situation is different. Recall that a one-dimensional
system of zero-range interacting bosons in a flat-bottom
box is exactly integrable [5] via Bethe ansatz, for all val-
ues of the coupling strength. The exactly known equation
of state in a box provides input for a unified beyond-mean-
field treatment of trapped quasi-one-dimensional atomic
gases, and that is what our paper is devoted to. The main
goal of this paper is to provide quantitative criteria for an
experimental realization of the Tonks-Girardeau gas [6] in
atomic experiments, with the main emphasis on deviations
of the spatial distribution from the mean-field Thomas-
Fermi profile [7]. We paid special attention to the inter-
mediate regime between weak and strong interactions, as
the most realistic from an experimental point of view. The
extreme case of infinitely strong interacting atoms in a har-
monic potential was already investigated in Ref. [8]. Also
the beyond-mean-field effects in the self-correlation func-
tion of the trapped one-dimensional gas were considered
in [9].

Experimental progress in creating one-dimensional
atomic gases is also quite fast. One-dimensional guiding
of thermal cold atoms through elongated magnetic configu-
rations [10] has already been successfully demonstrated.
Furthermore, a recent experiment [11] has demonstrated
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truly one-dimensional behavior of a Bose-Einstein con-
densate trapped by a shallow magnetic gradient in the
longitudinal direction combined with a blue detuned hol-
low laser beam, ensuring tight confinement in the radial
directions. Another promising candidate in this respect is
atoms in an array of 1D traps formed in the intersection of
two far-detuned Gaussian standing waves [12], obtained in
turn by releasing a full, three-standing-wave optical lattice,
where up to �20% ground vibrational mode occupation
is already experimentally accessible [13]. A 2D version
of such an array (one standing wave) has already been
reported in literature [14].

In highly elongated cigar-shaped traps �v� ¿ vz�, the
transverse atomic motion is governed by the Hamiltonian
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where m is the mass of the atoms, and v� and vz are
the transverse and longitudinal frequencies of the trap, re-
spectively. If neither temperature nor interaction energy
per particle e (defined below) exceeds the transverse level
spacing h̄v�, atoms occupy the ground mode of this Ham-
iltonian, and the system becomes effectively one dimen-
sional [15]. In particular, the interparticle interaction in
the longitudinal direction can be well approximated by an
effective two-atom interaction potential [15]

U1D�z� � g1Dd�z� . (2)

where g1D � 2h̄2�m̃a1D is an effective one-dimensional
coupling constant, and a1D � �2a2
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is the one-dimensional scattering length defined
analogously to the three-dimensional case as
a1D � 2≠D�≠kz jkz!01 , with D�kz� being the scat-
tering phase of the even scattered wave. Here and below,
m̃ � m�2 is the reduced mass, a� �

p
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size of the ground state of the transverse Hamiltonian in
Eq. (1), a is the three-dimensional scattering length, and
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Up to terms containing C , the effective one-
dimensional interaction is a simple projection of the
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three-dimensional zero-range interaction on the transverse
ground mode. Transverse renormalization effects captured
in the C -dependent terms become important only for
strong confinement, jaj ¿ a�.

In addition to transverse trapping and interparticle in-
teractions, the atoms are also subject to weak residual
longitudinal trapping, which is usually represented by a
one-dimensional harmonic potential of a frequency vz .
The effective one-dimensional Hamiltonian for N trapped
atoms is thus

bH1D � bH0
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is the well-known Hamiltonian for a one-dimensional,
d-interacting Bose gas in a flat-bottom box. This Hamil-
tonian can be diagonalized via Bethe ansatz [5], and thus
the equation of state of such a gas is known exactly for all
densities and temperatures [16]. At zero temperature the
energy per particle e�n� is given through

e�n� �
h̄2

2m
n2e���g�n���� , (5)

where the dimensionless parameter g � 2�nja1Dj is in-
versely proportional to the one-dimensional gas parameter
nja1Dj, n is the one-dimensional number density of par-
ticles, and the function e�g� is given by

e�g� �
g3
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Functions g�x jg� and l�g� are solutions of the Lieb-
Liniger system of equations [5]:
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Limits of small and large gas parameter nja1Dj can be
expressed in closed form (see [5]) as

nja1Dj ! 0, e�n� !
p2h̄2

6m
n2, (9)

and

nja1Dj ! `, e�n� !
1
2

g1Dn . (10)

The low-density limit (9) corresponds to the case of infi-
nitely strong interactions; the corresponding atomic system
is usually referred to as a gas of impenetrable bosons or
Tonks-Girardeau gas [6]. Notice that the expression for
the energy per particle formally coincides with the one for
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free fermions: this is a manifestation of the Fermi-Bose
duality in one-dimensional systems [17]. The opposite
limit of high densities (10) represents (if multiplied by
the number of particles and integrated over volume) the
Thomas-Fermi energy functional first introduced by Bo-
goliubov [3]. It is usually viewed as the thermodynamic
limit of the Gross-Pitaevskii energy functional [18], de-
rived in turn on the basis of the mean-field approximation.
It should be mentioned that in the three-dimensional case
the mean-field approximation is valid for low densities,
contrary to the one-dimensional case where it is valid at
high densities instead.

We now introduce the classical hydrodynamical ap-
proximation: we suppose that the trapped gas at each po-
sition z is in local thermal equilibrium, with local energy
per particle given through Eq. (5). At zero temperature
the hydrodynamic equations of motion read
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where y is the atomic velocity, V �z� � mv2
z z2�2 is the

potential energy per particle, and
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is the Gibbs free energy per particle obtained using
Eqs. (5)–(8), (11), and (12) and tabulated in Ref. [19].
The validity of the hydrodynamical approximation re-
quires that the typical energy per particle e � my2�2 1

f 1 V be much higher than the longitudinal quantum
level spacing h̄vz .

In what follows we will be interested in a steady-state
solution of the system (11). The first integral of the sta-
tionary version of this system obviously reads

f�n� 1 V �z� � m for jzj # R ,

n � 0 for jzj . R ,
(13)

where m can be proven to be the chemical potential of the
system, fixed by a normalization conditionZ 1R

2R
n�z� dz � N . (14)

Here the atomic cloud radius R is given by V �R� � m.
In the limit of low density (9) the density profile is a

square root of parabola [8]
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for z [ �2RTonks, RTonks�, with n � 0 elsewhere, where

n0
Tonks � ��2�p2�N�mvz�h̄��1�2, (16)

RTonks � �2N�h̄�vzm��1�2. (17)
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The opposite limit (10) reproduces the familiar Thomas-
Fermi parabola [7]. In this limit, it is easy to show that

n�z� � n0
TF
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for z [ �2RTF, RTF�, with n � 0 elsewhere, where

n0
TF � ��9�64�N2�mvz�h̄�2ja1Dj�1�3, (19)

RTF � �3N�h̄�mvz�2�ja1Dj�1�3. (20)

In general, the rescaled density s � n�n0
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rescaled version of the system (13) and (14),
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where x � z�RTF is the dimensionless coordinate, and
f�g� � �3e�g� 2 gde�dg��g2 is the dimensionless
Gibbs energy (see [19]). We see that this system has only
one governing parameter,

h � n0
TFja1Dj
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FIG. 1. Discrepancy between the cloud size computed from the
exact equation of state and from the Thomas-Fermi prediction, as
a function of the (single) governing parameter h (23) shown in
the upper x axis. As an example of a “physical” variation of the
parameter h we consider N � 200 confined in a cigar-shaped
trap of transverse frequency n� � 180 kHz 133Cs atoms, whose
scattering length is magnetically tuned [20] to a � 1120aBohr.
Variation of the parameter h is supposed to be realized through
the variation of the longitudinal frequency nz (lower x axis).
For the three representative points marked in this figure, we
computed the density profiles from the exact Thomas-Fermi and
Tonks-Girardeau equations of state. Results are shown in Fig. 2.
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FIG. 2. Comparison of density profiles produced by Thomas-
Fermi, exact, and Tonks-Girardeau local equations of state for
the points indicated in Fig. 1. (a) h � 0.07, nz � 10 Hz;
Tonks-Girardeau regime. (b) h � 0.4, nz � 130 Hz; interme-
diate regime. (c) h � 9, nz � 13 kHz; Thomas-Fermi regime.
The number of atoms, three-dimensional scattering length, and
transverse frequency are the same as in Fig. 1.
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whose physical meaning is the Thomas-Fermi estimate of
the one-dimensional gas parameter in the center of the trap.
It is easy to show that the limit of small h corresponds to
the Tonks-Girardeau limit, and the limit of large h, to the
Thomas-Fermi limit:

h ø 1 °! Tonks-Girardeau profile (24a)

[see Eq. (15)],

h ¿ 1 °! Thomas-Fermi profile (24b)

[see Eq. (18)].
The exactly known equation of state [Eq. (5)] allows one

to precisely map the transition between these two limiting
behaviors. A convenient way to detect, both experimen-
tally and numerically, the degree to which the system is in
one or the other limiting regime is to compare the size of
the cloud of trapped atoms [R computed from Eqs. (13)
and (14)] to the Thomas-Fermi prediction RTF in Eq. (20).
This is shown in Fig. 1. Density profiles for three repre-
sentative values of the governing parameter h are plotted
in Fig. 2. As Figs. 1 and 2 make clear, the transition be-
tween the two limiting regimes happens over the range of
the governing parameter h from about 0.1 to 10, reaching
75% of the cloud size discrepancy for the former.

Let us summarize the requirements for a successful ob-
servation of the zero-temperature Tonks-Girardeau den-
sity profile (15): (i) The coupling constant g1D [see (2)]
must be positive. This condition is equivalent to 0 , a ,

a��C . (ii) To ensure the one-dimensional behavior of the
system the energy per particle must not exceed the trans-
verse level spacing; in the case of the Tonks-Girardeau gas
this condition leads to h̄vzN ø h̄v�. (iii) The number
of particles must be well below the Tonks-Girardeau vs
Thomas-Fermi boundary which requires h ø 1, where h

is given by (23). (iv) It turns out that not every set of
trap and atom parameters for the energy per particle at
the Tonks-Girardeau vs Thomas-Fermi boarder �h � 1�
is consistent with the hydrodynamical approximation, i.e.,
exceeds the longitudinal level spacing. To avoid that, one
must require h̄2�mja1Dj

2 ¿ h̄vz or a ¿ �a2
��az� �1 2

Ca�a��, where az � �h̄�mv��1�2 is the size of the lon-
gitudinal ground state. If the above condition is violated,
then, as the number of particles decreases, the system
will pass from the Thomas-Fermi regime to the ideal gas
directly, skipping the Tonks-Girardeau regime. (v) One
may also require that, when one is already in the Tonks-
Girardeau regime �h ø 1�, the number of atoms must
nevertheless be high enough to ensure the hydrodynami-
cal, nonideal gas behavior. It turns out that this require-
ment leads to a trivial condition of having more than one
atom in the system: N ¿ 1.
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