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Degree Distributions of Growing Networks
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The in-degree and out-degree distributions of a growing network model are determined. The in-degree
is the number of incoming links to a given node (and vice versa for out-degree). The network is built
by (i) creation of new nodes which each immediately attach to a preexisting node, and (ii) creation of
new links between preexisting nodes. This process naturally generates correlated in-degree and out-
degree distributions. When the node and link creation rates are linear functions of node degree, these
distributions exhibit distinct power-law forms. By tuning the parameters in these rates to reasonable
values, exponents which agree with those of the web graph are obtained.
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The World-Wide Web (WWW) is a rapidly evolving net-
work which now contains more than 109 nodes. Much
recent effort has been devoted to characterizing the under-
lying directed graph formed by these nodes and their con-
necting hyperlinks —the so-called “web” graph [1–4]. In
parallel with these developments, a variety of growing net-
work models have recently been introduced and studied
[5–14]. These model networks are built by sequentially
adding both nodes and links in a manner which mimics
the evolution of real network systems, with the WWW be-
ing the most obvious example.

One fundamental characteristic of any graph is the num-
ber of links at a node—the node degree. The growing
network models cited above predict that the distribution
of node degree has a power-law form for growth rules in
which the probability that a newly created node attaches
to a preexisting node increases linearly with the degree of
the “target” node [5–8]. This power-law behavior strongly
contrasts with the Poisson degree distribution of the classi-
cal random graphs [15], where links are randomly created
between any pair of preexisting nodes in the network.

Since web links are directed, the total degree of a node
may naturally be resolved into the in-degree— the num-
ber of incoming links to a node— and out-degree— the
number of outgoing links from a node (Fig. 1). While the
total node degree and its distribution are now reasonably
understood [5–8,11], little is known about the joint distri-
bution of in-degrees and out-degrees, as well as their cor-
relation. Empirical measurements of the web indicate that
in-degree and out-degree distributions exhibit power-law
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FIG. 1. A node with in-degree i � 4, out-degree j � 5, and
total degree 9.
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behaviors with different exponents [2–4]. In this Letter,
we solve for the joint distribution in a simple growing
network model. We are able to reproduce the observed
in-degree and out-degree distributions of the web as well
as find correlations between in-degrees and out-degrees of
each node.

Our model represents an extension of growing network
models with node and link creation [13,14] to incorporate
link directionality. The network growth occurs by the fol-
lowing two distinct processes (Fig. 2).

(i) With probability p, a new node is introduced and it
immediately attaches to one of the earlier target nodes in
the network. The attachment probability depends only on
the in-degree of the target.

(ii) With probability q � 1 2 p, a new link is cre-
ated between already existing nodes. The choices of the
originating and target nodes depend on the out-degree of
the originating node and the in-degree of the target node.

If only process (i) was allowed, the out-degree of each
node would be one by construction. Process (ii) has been
shown to drive a transition in the network structure [14].
We shall further show that this general model gives a non-
trivial out-degree distribution which is distinct from the
in-degree distribution.

(ii)(i)
FIG. 2. Illustration of the growth processes in the growing
network model: (i) node creation and immediate attachment,
and (ii) link creation. In (i) the new node is shaded, while in
both (i) and (ii) the new link is dashed.
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We begin our analysis by determining the average node
degree; this can be done without specification of the attach-
ment and link creation probabilities. Let N�t� be the total
number of nodes in the network, and let I�t� and J�t� be
the total in-degree and out-degree, respectively. Accord-
ing to the two basic growth processes enumerated above,
at each time step these degrees evolve according to one of
the following two possibilities:

�N , I , J� !
Ω

�N 1 1, I 1 1, J 1 1� probability p,
�N , I 1 1, J 1 1� probability q,

(1)

That is, with probability p a new node and new directed
link are created (Fig. 2) so that the number of nodes and
both node degrees increase by one. Conversely, with
probability q a new directed link is created and the node
degrees each increase by one, while the total number of
nodes is unchanged. As a result,

N�t� � pt, I�t� � J�t� � t , (2)

from which we immediately conclude that the average
in-degrees and out-degrees, Din � I�t��N�t� and Dout �
J�t��N�t�, are both time independent and equal to 1�p.

To determine the joint degree distributions, we need
to specify: (i) the attachment rate A�i, j�, defined as the
probability that a newly introduced node links to an exist-
ing node with i incoming and j outgoing links, and (ii) the
creation rate C�i1, j1 j i2, j2�, defined as the probability of
adding a new link from a �i1, j1� node to a �i2, j2� node. We
restrict the form of these rates to those which we naturally
expect to occur in systems such as the web graph. First,
we assume that the attachment rate depends only on the in-
degree of the target node, A�i, j� � Ai . We also assume
that the link creation rate depends only on the out-degree
of the node from which it emanates and the in-degree of
the target node, that is, C�i1, j1 j i2, j2� � C� j1, i2�.

On general grounds, the attachment and creation rates
Ai and C� j, i� should be nondecreasing functions of i and
j. For example, a web-page designer is more likely to
construct hyperlinks to well-known pages rather than to
obscure pages. Similarly, a web page with many outgo-
ing hyperlinks is more likely to create even more hyper-
links. We have found that the degree distributions exhibit
qualitatively different behaviors depending on whether the
asymptotic dependence of the rates Ai and C� j, i� on both
i and j grow slower than linearly, linearly, or faster than
linearly. The first and last cases lead either to rapidly de-
caying degree distributions or to the dominance of a single
node; this same behavior was already found for the total
node degree [7,11]. The most interesting behavior arises
for asymptotically linear rates, and we focus on this class
of models in our investigations.

Specifically, we consider the model with attachment and
creation rates which are shifted linear functions in all in-
dices (linear-bilinear rates)
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Ai � i 1 l, C� j, i� � �i 1 l� � j 1 m� . (3)

An intuitively natural feature of this model is that both the
attachment and creation rates have the same dependence
on the popularity of the target node. The parameters l

and m in the rates of Eq. (3) must obey the constraints
l . 0 and m . 21 to ensure that the corresponding rates
are positive for all permissible values of in-degrees and
out-degrees, i $ 0 and j $ 1.

As the network grows, the joint degree distribution,
Nij�t�, defined as the average number of nodes with i
incoming and j outgoing links, builds up. To solve for
Nij�t�, we shall use the rate equation approach, which has
recently been applied to simpler versions of growing net-
works [7,8,11]. When the attachment and creation rates
are given by Eq. (3), the degree distribution Nij�t� evolves
according to the rate equations

dNij

dt
� �p 1 q�

∑
�i 2 1 1 l�Ni21,j 2 �i 1 l�Nij

I 1 lN

∏

1 q

∑
� j 2 1 1 m�Ni,j21 2 �j 1 m�Nij

J 1 mN

∏

1 pdi0dj1 . (4)

The first group of terms on the right-hand side account
for the changes in the in-degree of target nodes. These
changes arise by simultaneous creation of a new node and
link (with probability p) or by creation of a new link only
(with probability q). For example, the creation of a link to
a node with in-degree i leads to a loss in the number of such
nodes. This occurs with rate �p 1 q� �i 1 l�Nij , divided
by the appropriate normalization factor

P
i,j�i 1 l�Nij �

I 1 lN . The factor p 1 q � 1 in Eq. (4) has been writ-
ten to make explicit the two types of relevant processes.
Similarly, the terms in the second group of terms accounts
for changes in the out-degree. These occur due to the cre-
ation of new links between already existing nodes —hence
the prefactor q. The last term accounts for the continuous
introduction of new nodes with no incoming links and one
outgoing link. As a useful self-consistency check, we can
easily verify that the total number of nodes, N �

P
i,j Nij ,

obeys �N � p, in agreement with Eq. (2). In the same
spirit, the total in-degrees and out-degrees, I �

P
i,j iNij

and J �
P

i,j jNij , obey �I � �J � 1.
By solving the first few of Eqs. (4), it is clear that the

Nij grow linearly with time. Accordingly, we substitute
Nij�t� � tnij , as well as N � pt and I � J � t, into
Eqs. (4) to yield a recursion relation for nij . Using the
shorthand notations,

a � q
1 1 pl

1 1 pm
and b � 1 1 �1 1 p�l ,

the recursion relation for nij simplifies to
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�i 1 a� j 1 m� 1 b�nij � �i 2 1 1 l�ni21,j

1 a� j 2 1 1 m�ni,j21

1 p�1 1 pl�di0dj1 . (5)

We first consider the in-degree and out-degree distribu-
tions, Ii�t� �

P
j Nij�t� and Oj�t� �

P
i Nij�t�. Because

of the linear time dependence of the nodes degrees, we
write Ii�t� � tIi and Oj�t� � tOj . The densities Ii and
Oj satisfy

�i 1 b�Ii � �i 2 1 1 l�Ii21 1 p�1 1 pl�di0 , (6)
µ
j 1

1
q

1
m

q

∂
Oj � � j 2 1 1 m�Oj21

1 p
1 1 pm

q
dj1 , (7)

respectively. The solution to these recursion formulas may
be expressed in terms of the following ratios of gamma
functions:

Ii � I0
G�i 1 l�G�b 1 1�
G�i 1 b 1 1�G�l�

, (8)

with I0 � p�1 1 pl��b, and

Oj � O1
G� j 1 m�G�2 1 q21 1 mq21�

G� j 1 1 1 q21 1 mq21�G�1 1 m�
, (9)

with O1 � p�1 1 pm���1 1 q 1 m�.
From the asymptotics of the gamma function, the

asymptotic behavior of the in-degree and out-degree
distributions have the power-law forms,

Ii � i2nin , nin � 2 1 pl , (10)

Oj � j2nout , nout � 1 1 q21 1 mpq21. (11)

These exponents for the degree distributions constitute one
of our primary results. Note that nin depends on l (an
in-degree feature), while nout depends on m (an out-degree
feature). Notice also that both the exponents are greater
than 2.

We can also solve the recursion relation (5) for nij when
i or j is small. For example, we can express ni1 as the ratio
of two gamma functions. Then we can express ni2 as the
sum of two such ratios, etc. While there appears to be no
simple general expression for the joint distribution, we can
extract the limiting behaviors of nij when i or j is large.
We find

nij �
Ω

i2jinjm, 1 ø j ø i;
j2joutil21, 1 ø i ø j;

(12)

with

jin � nin 1
q
p

�nin 2 1� �nout 2 2�
nout 2 1

jout � nout 1
1
p

�nout 2 1� �nin 2 2�
nin 2 1

. (13)
Thus the in-degrees and out-degrees of a node
are correlated—otherwise, we would have nij �
IiOj � i2ninj2nout . This correlation between node de-
grees is our second basic result.

The analytical form of the joint distribution greatly
simplifies when nin � nout, corresponding to a � 1 and
m 1 b � 2l. In this region of the parameter space, the
recursion relation (5) reduces to

�i 1 j 1 2l�nij � �i 2 1 1 l�ni21,j

1 � j 2 1 1 m�ni,j21

1 p�1 1 pl�di0dj1 . (14)

Equation (14) is simpler than the general recursion (5)
since the node degrees i and j now appear with equal
prefactors. This feature allows us to transform Eq. (14)
into a constant-coefficient recursion relation. Indeed, the
substitution

nij �
G�i 1 l�G� j 1 m�
G�i 1 j 1 2l 1 1�

mij (15)

reduces (14) to

mij � mi21,j 1 mi,j21 1 gdi0dj1 , (16)

with g � p�1 1 pl�G�1 1 2l���G�l�G�m 1 1��. We
solve Eq. (16) by the generating function technique. Mul-
tiplying Eq. (16) by xiyj and summing over all i $ 0,
j $ 1 yields

M�x, y� �
X̀
i�0

X̀
j�1

mijx
iyj �

gy
1 2 x 2 y

. (17)

Expanding this latter expression we obtain

mij � g
G�i 1 j�

G�i 1 1�G� j�
. (18)

Combining Eqs. (15) and (18) gives the joint in-degree and
out-degree distribution

nij � g
G�i 1 l�G� j 1 m�G�i 1 j�

G�i 1 1�G� j�G�i 1 j 1 2l 1 1�
. (19)

In analogy to Eq. (12), this joint distribution reduces to

nij � g
il21jm

�i 1 j�2l11 (20)

in the limit i ! ` and j ! `.
Another manifestation of the correlation in the degree

distribution becomes evident by fixing the in-degree i and
allowing the out-degree j to vary. We find that nij reaches
a maximum value when j � im��2 1 �1 1 p�l� (here
we consider large i and assume that m . 0). Correspond-
ingly, the average out-degree always scales linearly with
the in-degree, � j	 � i�m 1 1����1 1 p�l� (here the co-
efficient is always positive). Thus popular nodes —those
with large in-degree— also tend to have large out-degrees.
A dual property also holds: Nodes with large out-
degree—those where many links originate— also tend to
be popular.
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Let us now compare our predictions with empirical ob-
servations for the World-Wide Web. The relevant results
for the node degrees are [4]

nin 
 2.1, nout 
 2.7, Din � Dout 
 7.5 ,

(21)

Setting the observed value Din � Dout � 7.5 to p21

[see the discussion following Eq. (2)] we see that the
predictions (10) and (11) match the observed values of
the in-degree and out-degree exponents when l � 0.75
and m � 3.55, respectively. With these parameter values
we also have jin 
 5.0 and jout 
 3.9. Empirical mea-
surements of these exponents would provide a definitive
test of our model.

We have also investigated a simplified model with node
creation rate Ai � i 1 l, as above, but with link creation
rate C� j, i� � j 1 m, which does not depend on the popu-
larity of the target node i (linear-linear rates). For this
model, the rate equations for the evolution of the num-
ber of nodes with degrees �i, j� have a similar structure
to Eq. (4), and they can be solved by the same approach
as that given for the network with linear-bilinear growth
rates. We find that the in-degree and out-degree distri-
butions again have power-law forms. Moreover, the out-
degree exponent is still given by Eq. (10), while the value
of the in-degree exponent is now nin � 1 1 l 1 p21. If
we set p21 � 7.5 to reproduce the correct average degree
of the web graph, we see that nin must be larger than 8.5.
Similarly the linear-linear model with Ai � i 1 l and
C� j, i� � i 1 m gives a power-law in-degree distribution
but the exponential out-degree distribution Oj � p2qj21.
Therefore linear-linear rate models cannot match empirical
observations from the web.

Parenthetically, we can also solve completely the grow-
ing network with both constant node creation rate and con-
stant link creation rate, Ai � 1 and C� j, i� � 1. While
not necessarily a realistic model, it provides a useful ex-
actly solvable case. By following the basic steps of the
rate equation approach, we find the joint distribution

nij �
p2qj21

2i1j

G�i 1 j�
G�i 1 1�G� j�

, (22)

from which we deduce the in- and out-degree distributions:
Ii � p2��1 1 p�i11 and Oj � p2qj21. Again, the in-
degrees and out-degrees of a node are correlated.

In summary, we have studied a growing network model
which incorporates: (i) node creation and immediate
attachment to a preexisting node, and (ii) link creation
between preexisting nodes. The combination of these
two processes naturally leads to nontrivial in-degree and
out-degree distributions. We computed many structural
properties of the resulting network by solving the rate
equations for the evolution of the number of nodes with
given in-degree and out-degree. For link attachment rate
linear in the target node degree and also link creation rate
linear in the degrees of the two end nodes, power-law
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in-degree and out-degree distributions are dynamically
generated. By choosing the parameters of the growth rates
in a natural manner, these exponents can be brought into
accord with recent measurements of the web. Within this
class of models, the linear-bilinear growth rate appears to
be a viable candidate for describing the link structure of
the web graph. The model also predicts power-law behav-
ior when, e.g., the in-degree is fixed and the out-degree
varies. Significant correlations between the in-degrees and
out-degrees of a node develop spontaneously, in agreement
with everyday experience. Quantitative measurements
of correlations in the web graph would test our model
and help construct a more realistic model of the World-
Wide Web.
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[12] B. Tadić, Physica (Amsterdam) 293A, 273 (2001).
[13] The earliest network model was proposed by H. A. Simon,

Biometrica 42, 425 (1955) to describe word frequency; see
also S. Bornholdt and H. Ebel, cond-mat/0008465.

[14] R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234
(2000); S. N. Dorogovtsev and J. F. F. Mendes, Europhys.
Lett. 52, 33 (2000).

[15] B. Bollobás, Random Graphs (Academic Press, London,
1985); S. Janson, T. Luczak, and A. Rucinski, Random
Graphs (Wiley, New York, 2000).


