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Direct Transition between a Singlet Mott Insulator and a Superconductor
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We argue that a normal Fermi liquid and a singlet, spin-gapped Mott insulator cannot be continuously
connected, and that some intermediate phase must intrude between them. By explicitly working out a
case study where the singlet insulator is stabilized by orbital degeneracy and an inverted Hund’s rule
coupling, mimicking a Jahn-Teller effect, we find that the intermediate phase is a superconductor.
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Understanding metal-insulator transitions driven by
electron correlation, the so-called Mott transitions (MT),
is a long standing problem. Renewed attention was
recently aroused by the development of the so-called
dynamical mean field theory (DMFT) [1], a quantum
analog of classical mean field theories, which treats
exactly local temporal fluctuations while freezing spatial
correlations. The DMFT has provided us with a complete
characterization of the MT for the single band Hubbard
model (SBHM) within the paramagnetic sector, where
magnetic instabilities are not allowed. The insulator-metal
MT does not occur by gradual closing of the Mott gap
between the Hubbard bands in the single-particle spec-
trum, but it is associated with the appearance (at a given
value U � Uc2) of a narrow “Kondo” quasiparticle peak
or resonance at the Fermi level [2,3]. The peak height is
pinned to the noninteracting value r0�m0�, but its width
is finite in the metal and vanishes continuously as the
MT is approached. For U , Uc2 the metallic state is
stable with respect to the metastable insulating solution
which exists for U . Uc1 [2,3]. Roughly in the interval
Uc1 , U , Uc2, the spectral function presents both the
broad Hubbard bands and the quasiparticle resonance, thus
combining to some extent the properties of a narrow-band
metal with those of the Mott insulator. For smaller U,
the lower and upper Hubbard bands merge together,
swamping the resonance away, and the correlated metal
continuously turns into an ordinary metal. As soon as the
constraint to the paramagnetic subspace is released, anti-
ferromagnetism (AFM) appears, and everything changes.
Even in partially frustrated models, where the effects of
magnetism are attenuated and AFM usually sets in only
above some UM , Uc2, magnetism still “contaminates”
the MT. The characteristic energy scale of the magnetic
fluctuations, in proximity of a continuous MT, necessarily
exceeds the width of the Kondo resonance, thus affecting
the properties of the ensuing metallic phase, e.g., turning
it into a spin-density wave.
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A new and different situation is to be expected if one
could realize a singlet, spin-gapped Mott insulator, such as,
e.g., a spin-liquid insulator. The entropy of such a state is
zero, as opposed to the extensive entropy of the Mott phase
in the SBHM [2], and no symmetry, magnetic or other, is
broken. In this Letter we discuss the consequences of the
zero-entropy property on the MT and on the correlated
metal just below the transition point. To this end, we
consider a (threefold) orbitally degenerate model arising in
the physics of the alkali-doped fullerides [4]. For densities
�n� � 2 or 4, the ground state (GS) of this model system
is nonmagnetic both for small U (metallic) and for large
U (singlet nondegenerate Mott insulator). We show that
a third, intermediate phase actually intrudes between the
Fermi liquid (FL) metal and the singlet Mott insulator.
Remarkably, the intermediate phase is a superconductor.
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where nia �
P

s d
y
iasdias is the electron number on each

orbital (a � 1, 2, 3) at site i, ni � ni1 1 ni2 1 ni3, and
Diab �

P
s�dy

iasdibs 1 H.c.�. Besides the overall on-site
repulsion U, the model includes a multiplet-exchange-
splitting term J. In presence of a Jahn-Teller coupling
to some high-frequency on-site vibration, as shown in
Ref. [4], J may effectively change sign from positive
(Hund’s rule) to negative. When �n� corresponds to 2 or
4 electrons per site (the problem is electron-hole symmet-
ric around �n� � 3), the isolated ion has a nondegenerate
GS which is simultaneously a spin and an orbital singlet.
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With a negative effective J , it is quite natural that a MT
from the paramagnetic metal towards a nondegenerate
singlet insulator should take place increasing U [4,5].

We carry out a DMFT study of the dynamics of model
(1) in proximity of the MT for �n� � 2, 4 on a Bethe lattice
with hopping diagonal in the orbital index, t

ab
ij � tdab.

The bandwidth is W � 4t. The DMFT maps (1) onto a
threefold-degenerate Anderson impurity model
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where Hint is the interaction (2) for the impurity operators
das’s. The self-consistency condition isX
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with Ga�iv� being the impurity Green’s function for or-
bital a [1]. We solve the impurity model by exact diago-
nalization [6]. The sums in Eqs. (3) and (4) are truncated
to a finite and small number Ns 2 1 of conduction “bath”
orbitals [7]. A surprisingly small value of Ns is indeed
enough to capture the qualitative features of the MT in the
SBHM, and Ns � 5, the value used here, gives good quan-
titative results [6]. Although the Hamiltonian is O(3) in-
variant under rotations in orbital space, we cannot exclude
a spontaneous breaking of this symmetry. We explicitly
studied solutions with orbital symmetry breaking (orbital
ordering), but we found that the orbitally symmetric solu-
tion, Ga�ivn� � G�ivn�, always has lower energy. In the
following, we consider only such symmetric solutions.

In order to characterize the metallic phase close to
the MT, we compute the single-particle spectral function
r�v� � 21�p ImG�v�, and the quasiparticle weight
Z � m�m� at the Fermi level, which is finite in the metal-
lic phase but zero in the insulator, and thus determines
the position of the MT. Within our numerical accuracy
the vanishing of Z appears to be continuous [see Fig. 2(a)
below], as in the SBHM [2]. In Fig. 1 we show the
evolution of the spectral function across the transition, for
different values of U�W but at fixed ratio J�W � 20.02.

The metallic phase close to the transition (U & Uc2)
shows a coexistence between high-energy insulating fea-
tures (Hubbard bands), and the low-energy metal feature
(the Kondo resonance), whose width vanishes at the transi-
tion. In addition, the Hubbard bands display a well-defined
multiplet structure, absent in the SBHM, and typical of
the orbitally degenerate site. Surprisingly, the linewidth
of these atomiclike excitations is not set by the bandwidth
as in the SBHM [2], but by a much smaller energy scale,
as if a kind of motional line narrowing were effectively at
work. The coexistence of atomic and metallic features is
therefore much more striking for our orbitally degenerate
model than for the SBHM.

As in the SBHM, the single-particle density of states
(DOS) at the chemical potential m must coincide with the
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FIG. 1. U dependence of the single-particle spectral function
for �n� � 4 and J�W � 20.02 in the normal state (with gauge
symmetry enforced).

bare DOS r0�m�. Moreover, as a consequence of Lut-
tinger’s theorem, the chemical potential must coincide with
the bare one, so that r�m� � r0�m0� for every U, and the
MT occurs by narrowing of the resonance peak. The peak
width E�

F � ZW�2 may be viewed as an effective Fermi
energy for the interacting system, or a Kondo tempera-
ture TK , below which the system may be described as a
FL. As a consequence, the entropy S�T ��N � T�TK for
T # TK , so that S�TK � is of order 1 up to Uc2, where TK
vanishes. By continuity, one can expect this entropy to be
released at the MT. This is indeed what happens in the
SBHM, where the entropy of the paramagnetic insulator
is S�N � log2. On the other hand, this is incompatible
with our nondegenerate insulator, which has zero entropy.
Therefore, it is hard to understand how a FL solution could
continuously connect to the Mott insulator, despite the nu-
merical evidence strongly pointing towards a continuous
transition. This suggests that the metallic solution may be
metastable close to the MT, and that some new phase may
appear.

The above heuristic arguments, which apply in any di-
mension for a Brinkman-Rice– type transition, where the
m� diverges, can be generalized to other cases where the
MT occurs towards a zero-entropy insulator. The main in-
adequacy of the metallic solution apparently lies in the con-
straint imposed by the Luttinger theorem. Without it, the
chemical potential could gradually move towards the edge
of the DOS, thus allowing one to smoothly connect the
metal with a zero-entropy insulator, as for a metal-to-band
insulator transition. This scenario would imply a break-
down of the Luttinger theorem before the MT. If the Mott
insulator would break some symmetry of the Hamiltonian,
e.g., the spin SU(2) symmetry, the metallic phase close
to the MT would likely break the same symmetry, allow-
ing the transition to become of the metal-band insulator
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type. This is what happens in the Hubbard model on a two-
dimensional triangular lattice [8], and also corresponds to
what is generally observed experimentally [9]. If, as in
our system, the insulator does not break any symmetry, it
is less clear what type of instability to expect. The pres-
ence of orbital degrees of freedom could suggest a pos-
sible orbital ordering, but, as mentioned before, solutions
with broken orbital symmetry always have higher energies
with respect to orbitally symmetric solutions, ruling out
the possibility of orbital ordering. Moreover, being that
the insulator is a spin singlet, there is no reason to expect
a magnetic instability in the metal, as confirmed by the
vanishing of the local spin susceptibility at the MT.

The only symmetry left, which we have so far enforced
in solving the self-consistency equation, is the U(1) gauge
symmetry. A deeper analysis of the metallic phase in
the framework of Landau FL theory suggests that U(1)
symmetry might be spontaneously broken. In our orbitally
degenerate model, the Landau functional must be invariant
under spin SU(2) and orbital O(3) symmetries. We define
the local densities in momentum space,
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where �s are Pauli matrices, and Li �i � x, y, z� are the
angular momentum operators in the L � 1 represen-
tation d1 � Y1,x , d2 � Y1,y , and d3 � Y1,z . We also
need to introduce five additional densities wi,k �P
d
y
aakWi,abdbak , i � 1, . . . , 5, where the matrices Wi’s
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the Landau functional reads
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The local spin susceptibility is given by x�x0 �
m��	m�1 1 FA

0 �
, where x0 is the bare susceptibility,
FA

0 � 6Vr0f
A
0 m��m, with fA0 being the l � 0 Legendre

transform of the Landau parameter. Since x actually
vanishes at the transition [as shown in Fig. 2(b)], then
the antisymmetric Landau parameter FA

0 is positive and
diverges at the MT, probably as m2
�. This is surprising

since, for small U ¿ jJj, fA0 � 2U�3 2 10�9J is
negative. All local orbital and spin-orbital susceptibilities
vanish at the transition, since the insulator has a total
gap for spin and orbital excitations, so that the Landau
parameters HS

0 , HA
0 , GS

0 , and GA
0 all diverge from the

positive side. In addition, similar to the SBHM, the
compressibility k�k0 � m��	m�1 1 FS

0 �
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� at the transition [Fig. 2(c)]. Hence FS
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diverges. As a result, the (intraorbital) quasiparticle
scattering amplitude in the singlet channel,
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becomes negative close to the MT, finally vanishing as
�m��21 for U ! Uc2, while, at weak coupling t ¿ U ¿
jJj, this quantity is positive (As � U�2 1 2J�3 . 0).
This strongly suggests a pairing between quasiparticles.
To check for this instability, we compute the dynamical
pair susceptibility P�v� � �0jDy

0 �v 2 H�21D0j0�, using
as the pair wave function the singlet GS of the atomic limit
D0 �

P
a d

y
0a"d

y
0a#.

The static limit of the real part of P�v� [shown in
Fig. 2(d)] changes sign in a narrow region just before the
MT, turning from negative (stable metal) to positive (un-
stable). This is another clear indication of a supercon-
ducting instability of the FL. To confirm completely this
hypothesis, we finally allow for a superconducting solu-
tion of the DMFT [1]. The lattice model is mapped onto

FIG. 2. U dependence of various relevant quantities in the nor-
mal state (with gauge symmetry enforced) for J�U � 20.02.
In panel (a) we show the quasiparticle weight Z, in panel (b)
the local spin susceptibility x, in panel (c) the compressibility
k, and in panel (d) the real part of the zero-frequency pairing
susceptibility P�0�.
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FIG. 3. Superconducting coupling DSC (solid curve) and spin
gap Dspin (dashed curve) as computed from the local spin sus-
ceptibility. The vertical dashed lines mark the boundaries of the
various phases.

an impurity coupled to a superconducting bath or, equiva-
lently, coupled to a normal bath through a normal and an
anomalous term,
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stabilize a solution with a finite value of any Dn, then
a superconducting solution is found. We find a stable
superconducting GS in the interval 0.82 , U , 0.9 (for
J�U � 20.02) in close proximity of the MT, as shown
in Fig. 3. We find that, while the superconducting order
parameter vanishes at the MT, the spin gap of the super-
conductor, as computed from the local spin susceptibil-
ity, remains finite and joins continuously into that of the
insulator, as shown in Fig. 3. Hence neither phase pos-
sesses spin entropy. A superconducting phase just be-
fore the MT is striking, as there is no sign of or reason
for such an instability in the weak-coupling limit, where
the intraorbital s-wave scattering amplitude is repulsive.
The antiadiabatic electron-phonon coupling implicit in the
choice J , 0, being unretarded, should be overwhelmed
by a large U ¿ jJj. As the repulsion U increases, the
bare electrons turn into quasiparticles. An effective over-
screening of U then takes place, generating the attraction
that causes the s-wave pairing. This is reminiscent of phe-
5364
nomena in other systems, such as the Hubbard chain with
next-nearest-neighbor hopping and the two-leg Hubbard
ladder [10]. Generation of an attractive interaction in the
effective impurity model, which has an on-site mechanism
of singlet formation competing with the Kondo screening,
is similar to the two-impurity Kondo model [11]. For
reasons of space we must defer pursuit of these analo-
gies to a future paper. The heuristic arguments presented
earlier suggest that superconductivity close to a singlet
MT should be a phenomenon of wider generality than the
simple model where we have uncovered it. Experimen-
tally, in the �n� � 4 alkali fulleride Rb4C60, which can
be transformed by a pressure of about 10 Kbar from its
narrow-gap, probably singlet Mott insulating state [4,5],
to a metal, no superconductivity was reported as far down
as 0.39 K [12]. Nonetheless, even if some features of our
model (antiadiabatic Jahn-Teller effect, diagonal hopping)
are quite unrealistic, we can expect, all the same, a narrow
superconducting pocket sufficiently close to the critical
insulator-metal pressure, at least if the transition is sec-
ond order, or not too strongly first order. The small su-
perconducting pocket for �n� � 4 might be connected to
the much larger one for �n� � 3, the well-known case of
superconducting fullerides.
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