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Leading Temperature Corrections to Fermi-Liquid Theory in Two Dimensions
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We calculate the basic parameters of the Fermi liquid: the scattering vertex, the Landau interaction
function, the effective mass, and physical susceptibilities for a model of two-dimensional (2D) fermions
with a short-ranged interaction at nonzero temperature. The leading temperature dependences of the spin
components of the scattering vertex, the Landau function, and the spin susceptibility are found to be
linear. T-linear terms in the effective mass and in the “charge-sector” quantities are found to cancel to
second order in the interaction, but the cancellation is argued not to be generic. The connection with
previous studies of the 2D Fermi-liquid parameters is discussed.
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The question of the low-energy behavior of two-
dimensional (2D) Fermi liquid (FL) is of long-standing
and fundamental importance. One crucial motivation has
been the non-Fermi-liquid behavior observed in high-Tc

superconductors above Tc [1]. In this context the existence
and stability of the FL in d . 1 has been extensively
investigated [2]. At least for short-ranged interactions and
in the absence of coupling to gauge fields, the FL is stable,
provided that standard conditions [3] are satisfied.

Rather surprisingly, the issue of the leading temperature
corrections to the parameters of a stable FL, which is of
intrinsic theoretical interest and has important implications
for the theory of quantum critical phenomena (as explained
in Ref. [4]), remains a subject of controversy. For example,
it was found [5] that the leading T correction to the specific
heat coefficient g � C�T was T2 lnT in 3D and T in 2D
[6,7]. Whether the spin and charge susceptibilities display
a similar anomalous (i.e., non-T2) temperature dependence
is a subject of a contradictory literature: see, e.g., Ref. [8],
and references therein. The prevailing conclusion was that
of Carneiro and Pethick [8] who found no leading T2 lnT
correction to the spin susceptibility of the 3D FL. Their
arguments imply that terms ~ T are absent in 2D.

The heuristic a posteriori argument for the absence of
anomalous terms in T or in q in response functions is that,
although these terms are known to occur in individual
diagrams, they cancel in “consistently calculated” physical
quantities due to Ward identities. We note that in the
existing literature concerning this point it is assumed that
the crucial coupling is between quasiparticles and long-
wavelength collective modes. However, the existence of
“2kF singularities,” i.e., anomalous temperature terms
coming from processes involving large ��2kF� momen-
tum transfers, was already pointed out by Misawa for 3D
FL in the early 1970’s [9]. Apparently due to the lack of
experimental evidence of a T2 lnT term in the susceptibil-
ity of a generic 3D FL and also because Misawa’s results
rely on the analysis of selected diagrams [cf. the begin-
ning of this paragraph], they were widely disregarded in
favor of those of Carneiro and Pethick. In the context of
semiconductor physics, Stern was the first to note [10] that
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in a 2D electron gas the electron scattering rate was pro-
portional to T due to 2kF effects. The consequences of the
2kF effects for the leading T dependence of 2D FL quan-
tities were not considered in the literature until recently.

The issue of the leading correction to 2D FL parameters
was recently revived by several papers. Belitz et al. [11]
concluded from perturbative analysis combined with power
counting that the leading q dependence of the spin suscep-
tibility was jqj in 2D (q2 lnq in 3D). They did not find
the analogous T correction explicitly, but concluded that
one should generally expect a linear-T term in the 2D FL
susceptibility (T2 lnT in 3D).

Sénéchal and one of us [12] predicted the occurrence of
the linear-T corrections to the FL vertices from one-loop
renormalization group (RG) calculations. This implies the
appearance of the linear-T corrections in other FL quanti-
ties, but explicit calculations were not done.

Hirashima and Takahashi [13] performed numerical
analyses of perturbative expressions which appeared to
confirm the prediction of Belitz et al. [11] for 2D suscep-
tibility. However, due to numerical difficulties in handling
divergences in some terms they were unable even to
determine the sign of the coefficient in the leading q term.
Also contrary to Belitz et al. who focused on the long-
wavelength contributions, the authors of Ref. [11] empha-
sized the crucial role of 2kF contributions in their findings.
Following this, Misawa conjectured the phenomenological
form for the free energy [7] which results in the linear-T
term in the 2D spin susceptibility and in the coefficient g,
and agrees well with the numerical calculations in lowest
order [14].

Despite this work a systematic analytic study of anoma-
lous terms in the FL parameters and their relationship to
Ward identities is warranted. To elucidate these issues in
the most transparent way, we apply a perturbation theory
for 2D contact-interacting spin- 1

2 fermions, starting from
a microscopic action. We present what is apparently the
first analytic calculation of the leading T dependence of
the effective mass, Landau parameters, and response func-
tions of a 2D electron gas, to second order in the inter-
action strength, including all channels and all momentum
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processes (scales). We take into account the Ward identi-
ties explicitly.

The model.—We treat interacting fermions at finite
temperature in the standard path integral Grassmannian
formalism. The partition function is given by Z �R
D c̄ Dc exp�S0 1 Sint�, where

S0 �
Z

�1�
c̄a�1� �iv1 1 m 2 e�k1��ca�1� . (1)

We have adopted the condensed notations, �i� � �ki , vi�
and

R
�i� � 1

b

R dki

�2p�2

P
vi

, where b is the inverse tem-
perature, m is the chemical potential, vi is the fermion
Matsubara frequencies, and ca�i� is a two-component
Grassmann field with a spin index a. Summation over
repeated indices is implicit throughout this paper. We set
kB � 1 and h̄ � 1. We consider mainly electrons with the
bare spectrum of a free gas e�k� � k2�2m and the circular
Fermi surface, but discuss the consequences of generic
spectra and a noncircular Fermi surface below. We take

Sint � 2
u

4n0

Z
�1,...,4�

c̄a�1�c̄b�2�cg�3�c´�4�Tab
g´

3 d�211��1 1 2 2 3 2 4� . (2)

Here n0 � m�2p is the free 2D density of states per
spin, the spin antisymmetric operator T

ab
g´ � da´dbg 2

dagdb´. For this model we calculate the FL parameters
by assuming 0 , u , 1, which corresponds to a weak
repulsion, and by assuming that we are above the Kohn-
Luttinger temperature.

Four-point 1PI vertex and the FL vertices.—The 1PI
vertex Ĝ�1, 2;Q� is defined in the standard way, where the
transfer Q � �q, V�, and V is a bosonic Matsubara fre-
quency. To shorten notations we denote operators in spin
space with a circumflex. To find the FL vertices we need
to calculate Ĝ�1, 2;Q� in the limit of zero transfer Q with
incoming momenta lying on the Fermi surface. Since the
Fermi surface is circular, the vertex can be parametrized
by the relative angle between incoming momenta. It is
known [3] that the limit Q ! 0 is not unique. Two ver-
tices, Ĝq�u12� � Ĝ�u12; q ! 0, V � 0� and ĜV�u12� �
Ĝ�u12; q � 0, V ! 0�, can be defined unambiguously
at u12 fi 0 and then continued to u12 ! 0 (see, e.g.,
Refs. [3,12] on this subtlety). They can be related to the
components of the physical scattering vertex �A, B� and
the Landau interaction function �F, G�, respectively.
Namely [3],

Adagdb´ 1 Bsa
agsa

b´ � 22nRZ2Gab�q�
g´ , (3)

where nR � m��2p , Z is the field renormalization
constant, and ŝa are Pauli’s matrices. Two components
�F, G� of the Landau function are defined by an analogous
equation, with the substitution q � V, A � F, B � G.

Scattering vertex and Landau function.—The one-loop
approximation for Ĝ�1, 2;Q� in diagrammatic form is
given in Fig. 1. In this approximation we calculate the
FL vertices (scattering vertex, Landau function) using
definition (3). At the one-loop level we can put nR � n0
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FIG. 1. Diagrammatic equation for the four-point vertex at the
one-loop level. The one-loop graphs are called ZS, ZS0, and
BCS in the order they appear on the rhs of this equation.

�m� � m� and Z � 1. By doing the direct analytic
evaluation of each diagram’s contribution to the vertex
we find the Fourier components of the angular-dependent
FL vertices in terms of the temperature series. This series
comes from the contributions of the ZS0 and Bardeen-
Cooper-Schrieffer (BCS) loops. The details will be given
in a companion paper [15]. We find the leading tempera-
ture corrections to the first two Fourier components of the
vertices:

dA0 � dF0 � dA1 � dF1 � 2u2 p2

24
T2

E2
F

, (4)

dB0 � dG0 � 2dB1 � 2dG1 � 2u2 T
EF

ln2 . (5)

We should mention that, taken separately, each contribu-
tion of the ZS0 or BCS bubble gives a leading T term to
the Fourier components of the vertices. However, a can-
cellation of such terms coming from two graphs occurs
in the “charge sector” (i.e., in A, F components), while
the linear-T terms survive in the “spin sector” (B, G com-
ponents). The temperature dependence of the ZS0 contri-
bution to the Fourier components of the vertices comes
from integration around the “effective transfer” through
the loop jk1 2 k2j � 2kF , i.e., when incoming momenta
k1 � 2k2. Similarly, the T dependence of the BCS con-
tribution comes from regions of small k1 1 k2, i.e., again
when k1 � 2k2. In other words, the temperature depen-
dence comes from “2kF effects.”

We expect that the cancellation of the T -linear terms
in the charge sector of the vertices (4) is an artifact of
our simple model calculation in which all three one-loop
terms have the same factor u2. If we had a bare coupling
function of, say, two incoming momenta and transfer, then
the coupling factors would have been different in each of
the three graphs, and the anomalous T corrections would
not have canceled.

The linearity of the leading T corrections to the vertices
seems to be generic. The same T dependence (apart from
presumably model-sensitive prefactors) was obtained in
the previous RG analysis [12] of the effective action for 2D
spinless fermions with a linearized one-particle spectrum
and a momentum-dependent coupling function. According
to Ref. [11] such temperature behavior can be understood
from dimensional arguments.
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Effective mass.— It is defined by the following equation:

m�

m
�

1 2
≠S�1�
≠iV

1 1
m
kF

≠S�1�
≠k

k1

kF

Év1�0

k1[SF

. (6)

To second order we have

m�

m
� 1 2

∑
≠S�1�
≠v

1
m
kF

≠S�1�
≠k

k1

kF

∏Çv1�0

k1[SF

1O �u3� .

(7)

By using the two Ward identities following from the charge
conservation and Galilean invariance [3], the above equa-
tion can be written as

m�

m
� 1 2

1
2

Z
�2�

k1k2

k2
F

G
ab
ab �1, 2; V ! 0� D�2�jv1�0

k1[SF
,

(8)

where

D�n� �
b

4

d�vn 2 jkn �
cosh2� 1

2bjkn �
. (9)

Within our accuracy we can use the one-loop approxima-
tion for the vertex in Eq. (8). One can easily verify that
in the the zero-temperature limit Eq. (8) recovers the stan-
dard result of the FL theory (FLT) [3], i.e., m��T � 0��
m � 1 1 F1�T � 0�. A straightforward extension of this
relationship to finite temperatures like m��T ��m � 1 1

F1�T � is not valid since, according to Eq. (8), m��T � con-
tains an extra contribution from the “off-shell” integration
over k2 �jk2� normal to the Fermi surface, albeit the factor
b� cosh2�bjk2 �2� makes this contribution well localized
near the Fermi surface. In other words the vertex entering
the right-hand side (rhs) of Eq. (8) is not exactly the FL
vertex F�T � (up to the normalization factor) as it is defined
in the FLT, since one of its momenta (namely, k2) is not
confined to the Fermi surface. After calculations we find
that the linear-temperature terms, coming essentially from
two one-loop contributions (ZS0, BCS) to the vertex, can-
cel, resulting in

m�

m
� 1 1

1
2

u2 1 O �u2T2� . (10)

In close analogy with the cancellation of the linear-
temperature terms in the Fourier components of the FL
vertices A �F�, here the cancellation occurs between addi-
tive linear-T corrections coming from both “on-shell” (i.e.,
linear-T term coming from the 2kF contribution to the
vertex) and off-shell (i.e., the small-momentum contribu-
tion) integrations in two diagrams. Moreover, the on-shell
(off-shell) T term of the ZS0 graph cancels the on-shell
(off-shell) T term of the BCS graph, correspondingly. We
expect that the cancellation does not occur at higher orders
in the interaction. We also evaluated (7) for a generic 2D
Fermi surface without explicitly using Ward identities,
finding a T -linear term [15]. The result may be expressed
as the sum of two terms, one arising from 2kF processes
and one from long-wavelength processes. The two con-
tributions cancel for a circular Fermi surface and contact
interaction, but not generically.

Calculations of the order u2 term in the free energy for
the model [(1) and (2)] show similarly that there is no
T -linear term in the specific heat coefficient g, contrary
to the results of Ref. [6], where 2kF contributions were
missed. However, the model’s modifications and/or higher
orders in u destroy the cancellation of the linear term. This
agrees with the recent experimental data on liquid 3He
films [7].

Response functions.—By using the same Ward identi-
ties as in the effective mass calculation, we found, for the
dynamic zero-transfer limit (V � 0, q ! 0) of the den-
sity response function,

˚ �
m
p

�1 1 u2 1 f1 2 f0	 ,

f1 � 2
p

m

Z
�1,2�

k1k2

k2
1

D�1� G
ab
ab �1, 2; V ! 0� D�2� ,

f0 � 2
p

m

Z
�1,2�

D�1� G
ab
ab �1, 2; V ! 0� D�2� .

(11)

At T � 0 we can read from Eq. (11) ˚�T � 0� � m
p �1 1

F2
0 1 F1 2 F0� which is nothing but the FLT result [3]

˚FLT �
m
p

11F1

11F0
, expanded up to the third order over the

interaction. Adding into consideration the Ward identity
following from the total spin conservation, we derived, for
the uniform spin susceptibility (for details see Ref. [15]),

X �
m�2

4p
�1 1 u2 1 f1 2 g0	 ,

g0 � 2
p

3m

Z
�1,2�

D�1� sa
g´sa

baGa´
bg�1, 2; V ! 0� D�2� ,

(12)

where � stands for the gyromagnetic ratio. Once again, one
can see that in the zero-temperature limit the above equa-
tion gives X �T � 0� �

m�2

4p �1 1 G2
0 1 F1 2 G0�, repro-

ducing thus the second-order expansion of the the FLT
result [3] X FLT � m�2

4p

11F1

11G0
.

We were able to analytically calculate the integrals
on the rhs of Eqs. (11) and (12) in the leading order of
their temperature dependence. We found that the leading
linear-T corrections, which can be traced back to the ZS0-
and BCS-loop contributions to the vertex, cancel in each
of the integral terms f0 and f1 in Eq. (11) separately. The
result for the density response is

˚ �
m
p

µ
1 2 u 2

1
2

u2 1 u2 ln
2L

kF

∂
1 O �u2T2� ,

(13)

where L ¿ kF is the ultraviolet cutoff we introduced to
regularize the BCS loop. Note that the compressibility
K � ˚�n2, where n is the electron density [3].

We calculate the susceptibility in the same way. In
this case the second integral term g0 in Eq. (12) does not
contain the contribution of the ZS0 loop, so the linear-T
term coming from the BCS loop survives. Thus the spin
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susceptibility has a linear leading temperature correction:

X �T �
X �0�


 1 1 u2 T
EF

, (14)

where X �0� �
m�2

4p �1 1 u 2 u2�ln 2L

kF
2

3
2 ��, and the first

omitted term is O �u2T2�.
It is useful to keep in mind that, albeit the response

functions in Eqs. (11) and (12) are explicitly expressed
in terms of the vertex only, those contributions indeed
entangle both “purely vertex” and self-energy corrections.
The latter are expressed just in terms of the vertex via the
Ward identities.

Let us return to the argument for the cancellation of
anomalous terms in the response functions due to Ward
identities. We calculated the vertices at the one-loop level
O �u2�. Through the Ward identities the self-energy cor-
rections were taken into account with the same accuracy.
There are no more terms of the order O �u2� to cancel the
temperature dependence (14). Thus, the linear-T depen-
dence of susceptibility (or weaker T dependence of the
compressibility) does not contradict the exact Ward identi-
ties known to us; moreover, in our results for the response
functions, both vertex and self-energy corrections are in-
cluded on the same footing by using the Ward identities.

Conclusions.—We have systematically examined the
leading temperature corrections to FLT in 2D. Our results
reveal the crucial importance of 2kF processes. We find
for the model of a 2D electron gas with a contact interac-
tion that to order u2 the leading T dependence of the FL
parameters in the spin sector is T ; for the others it is T2.

We find that the relationships known from the classical
FLT derivations at T � 0 for the parameters of Galilean-
invariant FL (e.g, the effective mass, response functions vs
components of the Landau function) are violated by finite-
temperature terms. The coefficients in the temperature cor-
rections to these relationships subtly involve contributions
from small and large ��2kF� momentum processes.

The particularly interesting result we found is the lead-
ing linear-temperature dependence of the spin suscepti-
bility (14). According to the perturbative calculations of
Belitz et al. [11], the 2D FL susceptibility has a leading
linear correction in jqj at T � 0 with a positive coefficient
which is of second order in interaction, i.e., their result has
the structure of Eq. (14). This also agrees with the phe-
nomenology of Misawa [7] and the numerical results [13].

For more realistic models of electrons in (quasi-)2D
crystals, i.e., for various tight-binding spectra and fillings,
the free-gas-like square-root 2kF singularities (with kF de-
pending on a chosen direction in q space) are known to ex-
ist in the Lindhard functions [16]. We think this is enough
to result in linear-T terms in physical quantities analogous
to what we found in this paper. We argue that the can-
cellation of the T terms in some FL parameters is special
to second-order perturbation theory and the model consid-
ered, while the leading linear-T corrections are a generic
feature of the 2D FL.
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We hope our results may be experimentally tested in real
2D FL systems. For example, a very naive fit of the tem-
perature dependence of the spin susceptibility in Sr2RuO4
system [17] when it is in the 2D metallic regime (above
a 3D crossover temperature) shows that the data are com-
patible with the form (14). We expect that our results will
stimulate a more detailed examination of the leading tem-
perature dependences of response functions in 2D systems.
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