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Imprinted Networks as Chiral Pumps
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We investigate the interaction between a chirally imprinted network and a solvent of chiral molecules.
We find that a liquid-crystalline polymer network is preferentially swollen by one component of a racemic
solvent. This ability to separate is linked to the chiral order parameter of the network, and can be
reversibly controlled via temperature or a mechanical deformation. It is maximal near the point at which
the network loses its imprinted structure. One possible practical application of this effect would be a
mechanical device for sorting mixed chiral molecules.

DOI: 10.1103/PhysRevLett.86.5309 PACS numbers: 61.30.–v, 61.41.+e, 78.20.Ek
Chirality is of vital importance in pharmacology and
chemical biology. Sorting right handed from left handed
molecules is a common and yet tricky process [1,2]. Tradi-
tionally, mixtures of chiral molecules are separated using
other chiral molecules with intrinsic chirality [2] which
is often difficult to control. Liquid-crystalline elastomers
with an imprinted chirality offer an alternative solution.

Recently we proposed a theory of chiral imprinting
in liquid-crystalline polymer networks [3] where nematic
polymers are cross-linked in the presence of chiral solvent,
that is when they have an induced cholesteric phase. Sub-
sequent removal of the solvent, and thus of all the intrinsi-
cally chiral material, can either leave behind a cholesteric
network or see the network lose its chiral structure, de-
pending on the strength of a chiral order parameter, a (see
below). Above a critical point at ac � 2�p, director twist
is lost in a second order manner. Experiments have shown
conclusively that imprinting can be achieved [4]. The me-
chanical behavior of such imprinted solids and similarly
cholesteric nematic networks has been analyzed [5]. Im-
posed strain induces the director to rotate and eventually
eliminates twist. Thus, mechanical deformation can mod-
ify and even destroy the chiral structure. For an imprinted
network, this can mean the complete loss of chirality (in
contrast to intrinsic materials that would thereby simply
enter an untwisted chiral nematic phase, N�). Imprinted
networks hence offer chirality that can be controlled exter-
nally. In this Letter, we calculate the interaction between
the imprinted chiral elastomer and a racemic solvent which
is used to swell the network. We show that the network has
the ability to sort the components of a mixture according
to their handedness, and this ability is a direct result of
a chiral order parameter controllable by simply deforming
the sample. This gives rise to the possibility of mechanical
devices to sort a racemic solvent.

In a cholesteric, the local order is similar to that of a
uniaxial nematic with director n (which then takes angles
uo � qox with respect to z in the yz plane as it advances
in a helix). A model for the total free network energy per
chain, Fn, in a nematic elastomer is a simple generalization
[6] of classical Gaussian rubber elasticity:
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anisotropy, r: l
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As a result of swelling, we expect the deformation ten-
sor l

d
to consist of a uniform expansion and a uniaxial,

volume-preserving deformation along the pitch axis, x:

l
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reflecting that, on coarse graining, the cholesteric is uni-
axial about the pitch axis. F is the volume fraction of
network after swelling. The volume Vo of the network in-
creases to Vo�F with the additional solvent.

Substituting (2) and (3) into (1) leads to
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The sin2 term gives the director anchoring to the net-
work. For small rotations, v, relative to the matrix it
gives the D1v2 term of the de Gennes continuum mechan-
ics approach [7,8]. Note that without network anchoring,
≠Fn�≠l leads to l � 1 and there is no tendency to relax
shape (at a given dilation). From the sin2 term, we deduce
that the anchoring coefficient after swelling, D̃1, is related
to that before swelling D1:

D̃1 �
F1�3

l
D1; D1 �

�r 2 1�2

r
Yo ; (4)

with the chain density defined as nn �
N
Vo

, the network
shear elastic constant being Yo � nnkBT , and N being the
total number of chains.

In the Frank energy [9], Ff , we retain only twist,

2F

VoK2
Ff � �n ? = 3 n 1 q�2 � �2du�dx 1 q�2.

(5)

For simplicity we assume the local nematic order and,
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therefore, K2 remain unchanged during swelling— for
instance, if the chiral solvent has the same nematogenic
properties as the polymer’s own nematogenic elements.
The pitch wave vector q will be different from the
originally imprinted qo due to deformation F1�3�l along
the x axis from swelling and shape change. The solvent
chirality, qs, further modifies q,

q �
F1�3

l
qo 2 qs�2f 2 1� . (6)

Thus the first term corresponds to geometry and the second
to the left-right imbalance of the solvent; the volume frac-
tions of the left and right handed solvents are fl � f and
fr � 1 2 f. The difference from racemic, f 2 1�2, al-
lows the twist, 6qs, of the enantiomers to express itself.

Imprinting is then a competition between the elastic an-
choring energy, Fn, which resists director rotation away
from the direction in which it was formed, and the Frank
5310
energy, Ff , which drives du�dx towards the current chiral
twist q. If q is different from the value qo remembered
by the network, then twist towards this new value may oc-
cur depending upon whether the anchoring, D̃1q2, or the
Frank, K2, energy prevails. This balance is quantified by
ã, the geometric ratio of the two energy scales:

ã �
q

K2�D̃1 q �

p
l q

F1�6qo
ao ; ao �

q
K2�D1 qo .

In Ref. [3], chiral solvent was replaced altogether, leav-
ing a Frank penalty K2q2

o . Imprinting was successful for
ao , 2�p and the twists were retained. Above 2�p one
must optimize over u profiles to find the minimal free en-
ergy, and some untwisting occurs (the efficiency of im-
printing is ,1; see Fig. 1).

Next we compare ã with 2�p and examine the prefer-
ential absorption of one handedness over the other.

The mixing free energy density can be written as
fm � nmkBT �xlrf�1 2 f� �1 2 F�2 1 f�1 2 F� lnf 1 �1 2 f� �1 2 F� ln�1 2 f� 1 �1 2 F� ln�1 2 F�
1 xlnf�1 2 F�F 1 xrn�1 2 f� �1 2 F�F� , (7)
where nm � 1�ym is the solvent number density (with ym

the volume occupied by a single solvent molecule). The
usual x interaction parameters describe the interaction of
left and right molecules with each other (lr) and with the
network (ln and rn). The latter are equal by symmetry if
the network polymers are achiral. The free energy of the
entire system is

F � NFn 1 Ff 1
Vo

F
fm . (8)

As in the case of imprinting, we need to minimize energy
over the profile of nematic director orientation u as we
go down the pitch axis. We can do this first since the
mixing part does not contain u, and then we need to find
the optimal l. We do this separately for different regimes
of imprinting parameter ã.

The small ã limit.— In this regime of high imprinting
efficiency, the director distribution is preserved. Thus there
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FIG. 1. Imprinting efficiency vs network parameter a. The
slope at the critical point a � a1

c diverges.
is no D1 penalty, but a Frank penalty for not having the
currently desired twist q:
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where fm � FmF�Vo , and q depends on solvent compo-
sition; see Eq. (6). Minimizing f over l gives a 4th order
polynomial equation in l (given the l dependence of q):
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However, assuming the uniaxial relaxation e � l 2 1 is
small, one can easily solve the above:

e � 2
K2

Yo
�f1�3qo 2 qs�2f 2 1��qo . (10)

Typically, K2 � 10211 N, Yo � 105 Pa, and qo,s �
105 m21, and it appears that the assumption of small e

(�1023) applies to most materials. Note that the explicit
F dependence has vanished in this limit, and the shape
relaxation is independent of the degree of swelling except
indirectly through f. Substituting l � 1 back, we have

f�f� �
K2

2
q̃2 1

3F1�3

2
Yo 1 fm , (11)

where q̃ � F1�3qo 2 qs�2f 2 1�. The chemical poten-
tial difference Dm � ml 2 mr � ���1��nm�1 2 F�����≠f�
≠f is

Dm

kBT
� h 1 xlr �1 2 2f� �1 2 F� 1 ln

f

1 2 f
,

where h � 22K2q̃qs��nmkBT �1 2 F��. In the reservoir
(no network, F ! 0, fl ! fo, and fr ! 1 2 fo), the
mixing energy density fr is
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FIG. 2. Director profile free energy g�ã� and derivative
dg�ã��dã (dashed line) against imprinting power ã.
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which yields the chemical potential difference
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We now equate this difference to that of the network:

xlr �1 2 2fo� 1 ln
fo

1 2 fo
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3 �1 2 F� 1 ln
f
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(12)

Suppose the xlr terms are negligible and that K2q̃qs ø
nmkBT ; i.e., h is small compared to 1. We then have for
the l concentration, f, in the network, given fo in the
reservoir,

f �
1 2 h

1 2 hfo
fo . (13)

We should also equate the osmotic pressures (≠F�≠F)
to determine the equilibrium values of F, in addition to
the f obtained above. In practice, F is readily fixed
experimentally; we take it as a known system parameter.

The large ã limit.— In this regime (ã ¿ 2�p) of low
imprinting efficiency, the director unwinds to the currently
desired twist q. There is then no Frank penalty but a D1
penalty since the anchoring has been violated:
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Minimization over l yields l̃ � ��r 1 1�2�4r�1�3 and the
free energy

f�f� �
3F1�3Yo
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∑
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FIG. 3. Chiral demixing in the network, f, against reservoir
solvent handedness, fo . See text for parameters used.

from which it follows that
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kBT
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f
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.

Equating the chemical potential difference to Dmr leads
to the equilibrium value of f. If we assume that the xlr

term is small so that x
2
lr and higher order terms in xlr can

be ignored, then the network f is close to that, fo, in the
reservoir:

f�fo � 1 1 xlr �1 2 2fo� �1 2 fo�F . (15)

The intermediate ã regime.— In general, minimization
over the u profile [3] gives
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with the profile free energy g�ã� given by

g�ã� � ã2 for ã , 2�p ,

� ã2 2 k22 1 1 for ã . 2�p , (17)

and where k is related to ã via ã � 2E �k��pk (see Fig. 2
for g and its derivative). E is the complete elliptic integral
of the second kind. Minimization of f�f, l� over l gives
a condition for the optimum l � l̃,∑
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Equating the network and reservoir exchange chemical po-
tentials yields
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where the prefactor g is given by
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Substituting the expressions for fm and fr leads to
2g
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≠ã
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FIG. 4. Demixing, f, versus formation imprinting power, ao ,
with constant reservoir concentration fo � 0.5.

The first term on the left hand side of the equation is the
contribution from the solvent-network interaction, which
discriminates between the solvent handednesses. If g and
F tend to zero, we recover the situation where f � fo .

Assuming that F and l̃ do not depend sensitively on ã

(which seems justified by the independence of l̃ on ã in
both the small and large ã limits), we can solve Eq. (19) by
approximating l̃ � 1 and taking a set of typical illustrative
parameters: F � 0.9, ao � 2�p , r � 2, nn�nm � 0.2,
qs�qo � 1, and xlr � 0. The solution is shown in Fig. 3.

Figure 3 shows that f . fo is generally satisfied: the
solvent handedness which agrees with the network is fa-
vored for absorption. One can utilize this to devise a
“pumping” cycle for extracting one component from a
racemic mixture. An elastomer, exposed to a given mix-
ture, preferentially absorbs one of the components. The
solvent mixture, recovered from stretching the swollen
elastomer and thereby switching off its chiral effect, can
then be used in the next cycle of purification.

If we choose to fix the reservoir concentration fo � 0.5
and vary the network’s imprinting power at formation, ao ,
we can see from Fig. 4 that the maximal resolving power
is obtained when the imprinting power of the resulting
network is near the transition point a � 2�p .

Finally, we examine the effect of xlr . It has been
hitherto set to zero; that is, we assume that any sponta-
neous tendency for the molecules of opposite handedness
to demix is small. We see in Fig. 5 that a positive value of
xlr favors demixing at small fo. Repeated cycles of our
5312
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FIG. 5. Demixing dependence on xlr , f, versus reservoir fo
for xlr � 0, 0.5 (dashed line), 1 (dotted line).

chiral pump will push f to the intersection of the curve
with the line f � fo.

We have shown that the chiral structures offered by im-
printing allows one to preferentially absorb one handed-
ness from a racemic mixture into a network. Moreover,
since the chirality is mechanically tuneable and there is no
material of intrinsic chirality in the network, one can then
release by mechanical fields the absorbed solvent in which
a chiral imbalance has been achieved.

We thank E. M. Terentjev and M. E. Cates for useful
discussions.
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