
VOLUME 86, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 JUNE 2001
Fast Formation of Magnetic Islands in a Plasma in the Presence of Counterstreaming Electrons
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With the help of 2D-3V (two dimensional in space and three dimensional in velocity) Vlasov simula-
tions we show that the magnetic field generated by the electromagnetic current filamentation instability
develops magnetic islands due to the onset of a fast reconnection process that occurs on the electron dy-
namical time scale. This process is relevant to magnetic channel coalescence in relativistic laser plasma
interactions.
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Magnetic field generation at the expense of the “ther-
mal” energy of an anisotropic electron population and the
conversion of magnetic energy into electron energy in the
presence of inhomogeneous currents represent two basic
features of the dynamics of a magnetic field in a plasma.
The first process is related to the well-known Weibel in-
stability [1] and can occur under various conditions that
include the case where the role of anisotropy is taken by
the presence of two counterstreaming (cold) populations.
In this latter case we refer to the so-called electromagnetic
current filamentation instability (EMCFI) [2] and the mag-
netic field generation can be interpreted as resulting from
the separation in space of the two counterstreaming popu-
lations due to the repulsion of oppositely directed currents.
The second process is related to the well-known magnetic
field line reconnection instabilities that have been studied
extensively in the context of laboratory and of astrophysi-
cal plasmas in dissipative and in collisionless regimes. In
the context of the present work, the reconnection processes
occur on the electron dynamical time scales and are related
to the collisionless instability studied in Refs. [3–6] (see
also references therein). As in the case of magnetohydro-
dynamic (MHD) reconnection, this instability leads to the
formation of magnetic islands and, as shown for collision-
less kinetic reconnection in the MHD frequency range [7,8]
anisotropy can either suppress it (large temperature com-
ponent parallel to the magnetic field) or enhance it (large
perpendicular temperature).

Recently, the electromagnetic current filamentation
instability has been thoroughly investigated [9–11] in the
context of the generation of a quasistatic magnetic field in
the wake of an ultrashort, ultraintense laser pulse propa-
gating in an underdense plasma [12] and of electron
transport in overdense plasmas [13]. In this case the two
oppositely directed currents consist of the fast electrons,
accelerated by the laser plasma interaction in the direction
of the laser pulse propagation, and of the return (lower
energy) electron current needed to maintain plasma neu-
trality. This magnetic field is quasistatic on the time scale
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of the oscillation period of the laser light and evolves on
the electron dynamical time scale, say on time intervals
of the order or longer than the Langmuir wave period,
so that its evolution is fast on the ion and on the MHD
time scales.

In Refs. [10,11] a two-dimensional, Cartesian, spatial
geometry was assumed, defined by the plane containing the
two counterstreaming electron populations and the wave
vector of the EMCFI. In such geometry, the magnetic field
is generated along the symmetry direction perpendicular
to the plane, and magnetic reconnection processes are
automatically suppressed. In this geometry the EMCFI
and the electrostatic two-stream instability, with wave
number along the direction of the electron streams, are
coupled. The nonlinear evolution of these coupled insta-
bilities was examined in the fluid approximation in [10]
and their kinetic saturation was investigated with a Vlasov
code in [11]. The quasistatic magnetic field generated by
the EMCFI is spatially inhomogeneous and the current
separation that is at the basis of the instability mechanism
leads to strong current gradients that are prone to the
development of reconnection-type processes. In order
to study the combined development of these processes,
a fully three-dimensional description of the plasma is
needed [14]. The minimal description of the combined
magnetic field generation and reconnection is actually
obtained in a 2D-3V (two dimensional in space and three
dimensional in velocity) configuration where all vector
fields are three dimensional, but are independent of the
coordinate x along which the streams propagate. In this
description, which is complementary to the one used in
Refs. [9–11], the (electrostatic) plasma dynamics along
the stream direction is suppressed.

The aim of the present paper is to show that the qua-
sistatic magnetic field generated by the EMCFI, which we
take to be oriented along z, develops magnetic islands on a
fast electron time scale because of the combined effect of
the current gradients and of the anisotropy in the y-z plane
induced by the deflection of the streams along y caused by
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the EMCFI magnetic field itself. This eventually leads to
a 3D isotropization of the electron distribution.

The concept of magnetic field line reconnection in the
frequency range considered, where ions can be taken as
immobile, arises in the context of the conservation of the
generalized vorticity Be � B 1 �mec�e�= 3 ue, where
ue is the electron fluid velocity. When the electrons are
either cold or isotropic and obey a barotropic law, Be is
frozen in the electron fluid [15] for processes that occur
on time scales longer than the Langmuir period such that
charge separation effects can be neglected. Then, for phe-
nomena with spatial scales larger than the electron inertial
skin depth de � c�vpe, with vpe the Langmuir frequency,
the generalized vorticity reduces simply to the magnetic
field B, which is thus frozen in the electron fluid. Under
these conditions, in the absence of dissipation, the recon-
nection processes discussed in Refs. [3,4,6] can arise due
to the formation of current sheets, with size of the order of
or smaller than de, that effectively decouple the conserved
vorticity from the reconnecting magnetic field.

Under the conditions examined in the present paper, no
true freezing constraint can be invoked for the magnetic
field produced by the EMCFI, because of the intrinsically
kinetic and anisotropic nature of the electron dynamics
[16]. Yet we will show that the structure and the time
evolution of the magnetic islands and of the flow patterns
that are formed after the nonlinear phase of the EMCFI
conform to those produced by magnetic field line recon-
nection instabilities.

The results presented in this paper are based on 2D-3V
kinetic simulations of the nonlinear electron dynamics.
These results are obtained with a Vlasov code that is an
extension of the 2D-2V code used in Ref. [11] and docu-
mented in [17]. These simulations are extremely costly
in terms of memory requirements and computational time.
We integrate the self-consistent Vlasov-Maxwell system
of equations in the � y, z, yx , yy , yz� phase space of elec-
trons while ions are taken as a fixed neutralizing back-
ground. We normalize quantities to the electron mass me,
to a characteristic particle density n, to the speed of light
c, and, consequently, to the electron plasma frequency
vpe � �4pn̄e2�me�1�2 and to the characteristic electric
and magnetic fields Ē � B̄ � mcvpe�e. The normalized
electron skin depth equals unity. In our simulations the
electromagnetic fields have three components.

We consider a spatially homogeneous initial state with
zero electric and magnetic fields and with two symmetric
counterstreaming electron populations modeled as the sum
of two Maxwellians, with densities n1 � n2 � 1�2 and
equal thermal velocity yth � 5 3 1023. The two distribu-
tions are centered around the velocities y1 � 2y2 � 0.4
such that n1y1 1 n2y2 � 0. Periodic boundary conditions
are used both in the y and in the z directions with box size
2p . The ratio of the box size L � 2p to the electron skin
depth is such that it allows the fastest EMCFI (correspond-
ing to kyde � 1) [9] to grow. In contrast, in terms of the
standard D0 parameter of reconnection theory and in the
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absence of anisotropy effects, we would expect the recon-
nection mode to be (marginally) stable. Note that D0 is well
defined only in the asymptotic limit de�LB ø 1, with LB

the inhomogeneity scale of the magnetic field, but it pro-
vides qualitatively correct information [6] on the plasma
stability also when de � LB.

At t � 0 a perturbed magnetic field of the form

B � Bo sin� y�ez 1 dB� y, z� (1)

is added to the system. Here Bo � 1023, ez is the unit
vector along z, and dB� y, z� is a divergence-free random
noise perturbation �1022 smaller. This initialization al-
lows the system to develop first a coherent y-dependent
magnetic field along z due to the EMCFI seeded by Bo .
The random noise perturbation seeds the subsequent de-
velopment of the reconnection process.

Here we report the results of two runs with identical
plasma parameters, but different resolution correspond-
ing to 322 3 613 and to 642 3 613 grid points, respec-
tively. In both runs the EMCFI develops with a growth
rate gCF � 0.28 leading to the formation of a dipolar mag-
netic field Bz� y� with amplitude Bmax � 0.27 at satura-
tion, as shown in Fig. 1 at t � 38.2. A local decrease
of the electron density dne � 20.4 occurs where B2

z is
largest. The occurrence of charge separation in the non-
linear development of the EMCFI, even in the absence of
coupling with the two-stream instability, was already noted
in Refs. [9,10].

The nonlinear development of the EMCFI leads to steep
current density profiles and to the magnetic deflection of
the electron streams in the y direction. In terms of an effec-
tive stress tensor measuring the spatially averaged kinetic
energy Tj in the jth direction, this leads to an increase of
Ty . While initially we had Tx ¿ Ty � Tz , in this phase
we find T� � Tx * Ty ¿ Tz , as shown in Fig. 2. These
conditions lead to the onset of the reconnection process
shown in Figs. 3 and 4 characterized by the exponential
growth of the kz � 1 Fourier component of the magnetic

FIG. 1. Spatial profile of the magnetic field Bz� y� (solid line)
and of the density perturbation dne� y� (dashed line) produced
by the EMCFI at t � 38.2.
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FIG. 2. Time behavior of the normalized temperatures Tj , j �
x, y, z after the EMCFI has saturated. In the small frame the
time evolution of the amplitude of the reconnecting field dBy is
shown.

field dB� y, z� with growth rate gR � 0.11 (see Fig. 2,
small frame). This value is largely independent of the reso-
lution adopted, which demonstrates that reconnection is
not caused by numerical dissipation in the code.

In the literature considerable work has been devoted to
the study of the collisionless reconnection instability (in
the MHD frequency range) in a neutral sheet configura-

FIG. 3. Projection of the magnetic field lines on the y-z plane
at t � 128.8 (a) and at t � 165 (b).
tion [18], and it has been shown that its growth rate g is
strongly affected by the temperature anisotropy �T��Tz 2

1� relative to the magnetic field [7]. This effect is due to
the coupling of the reconnecting mode with the Weibel
instability, i.e., in our case, with the secondary Weibel
instability induced by the y deflections of the streams. The
growth rate gR is given by

gR
p

p

kzythe,z

T�

Tz
�

d2
e

de
�D0 1 D0

0� , (2)

where de � L1�2T
1�4
� ��21�2Bmax�1�2 is the scale of the

so-called Parker orbits [19] and D
0
0 � �de�d2

e� �T��Tz 2

1�. From the y profile of the EMCFI magnetic field and
from the temperature ratios given in Fig. 2, we estimate
D0 � 21.3 and D

0
0 � 9.0, so that the condition D0 1

D
0
0 . 0 is well satisfied. The numerical growth rate gR is

also consistent with the value given by Eq. (2) which arises
from electron phase-space effects, i.e., from a resonant
term in the plasma dispersion function. This picture is con-
firmed by the numerical value of the ratio dBy�dBx � 4.

FIG. 4. Density (a) and velocity (b) distributions in the y-z
plane at t � 165. The black curve in frame (a) gives the profile
at y � 3 of the density which varies between 0.7 and 1.1.
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We recall that in the case of magnetic reconnection on
the electron time scales [4,6] the perturbed magnetic field
component dBx , in the geometry of the present paper,
plays a role analogous to that of the stream function f

(i.e., of the plasma fluid displacement j� in the standard
theory of MHD reconnection. In the case when resonant
phase-space effects are dominant, the reconnecting com-
ponent dBy is much larger than the stream-function com-
ponent dBx, in full analogy with the corresponding MHD
result [18].

The development of the reconnection instability leads
to the formation of magnetic islands in the y-z plane [see
Fig. 3(a), at t � 128.8] which eventually fill the simula-
tion box, as shown in Fig. 3(b) at t � 165. At this point
the simulation is interrupted. The island structure is repro-
duced in the electron density spatial distribution and in the
flow pattern shown in Figs. 4(a) and 4(b). Charge separa-
tion effects on electron reconnection instabilities have been
studied in Ref. [20], where they have been found to lead
to a reduction of the growth rate. In the nonlinear phase
of the reconnection instability the temperature Tz increases
while Tx,y decrease (see Fig. 2), thus indicating a tendency
toward full isotropization of the electron distribution.

The results presented above show that the field lines of
the magnetic field generated by the EMCFI reconnect on
a fast electron time scale. The reconnection growth rate
found in our simulations is smaller than that of the EMCFI
only by a factor of �3. The main source of free energy
for both instabilities is essentially the initial anisotropy of
the two counterstreaming electron populations.

The reconnection of magnetic field lines is of great
importance for the understanding of the 3D dynamics of
the magnetic plasma channels that are formed in the wake
of an ultraintense, ultrashort laser pulse in a plasma [12].
In particular, magnetic reconnection allows magnetic
channels to coalesce [21], as shown recently, e.g., in 3D
particle-in-cell simulations in overdense plasmas in
Ref. [22]. To be compared directly with these physical
conditions, the present results must be generalized so as
to include relativistic electron kinematics and asymmetric
(n1 fi n2) electron streams, as is the case in laser plasma
interactions where the fast electrons are a minority rela-
tivistic population and the density of the electrons in the
return current is close to the plasma density.
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