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Destabilization of Internal Kink Modes at High Frequency
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A theoretical model is proposed to interpret the high-frequency fishbone instability observed in tangen-
tial neutral-beam-injection discharges in a tokamak. It is shown that, when the beam ion beta exceeds a
critical value, energetic circulating ions can indeed destabilize the internal kink mode through circulation
resonance at a high frequency comparable to the circulation frequency of the energetic ions. The critical
beta value of the energetic ions, the real frequency, and the growth rate of the mode are in general
agreement with the high-frequency fishbone instability observed in experiments.
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It is of particular interest to investigate the fishbone
instability in tokamak fusion research [1–5]. Experiments
have shown that a mode with dominant toroidal and
poloidal wave numbers n � 1 and m � 1 can be strongly
destabilized with the presence of energetic ions produced
by neutral beam injection. The frequency of the dominant
mode is around the toroidal precession frequency of the
trapped energetic ions for the perpendicular injection
case [1] or around the plasma toroidal rotation fre-
quency for the tangential injection case [3]. Such a low-
frequency fishbone instability is sometimes accompanied
by high-frequency events in the perpendicular injec-
tion case [2]; it is always accompanied by the high-
frequency events in the tangential injection case [3]. The
high-frequency fishbone burst results in a few percent of
beam ion loss [3,4]. Currently, it is understood that the
low-frequency fishbone instability is due to the precession
resonance of trapped energetic ions in the perpendicular
injection case [6,7] and the crossing resonance (arising
from the effect of finite radial drift of energetic circulating
ions) of energetic circulating ions in the tangential injec-
tion case [8]. However, understanding the high-frequency
fishbone is still an open issue. In this paper, we propose a
theoretical model to interpret the high-frequency fishbone
instability observed in the tangential injection case. We
show that when the beta value of the energetic ions
is high enough, energetic circulating ions can indeed
destabilize the internal kink mode at a high frequency
comparable to the circulation frequency of the energetic
ions. Here the beta value is the ratio between particle
and magnetic pressures. The critical beta value of the
energetic ions, the real frequency, and the growth rate of
the mode are in general agreement with the experimental
observations.

We consider a large-aspect-ratio tokamak plasma
consisting of core and hot components. The inverse of
the aspect ratio, ´ � a�R ø 1, with a and R the minor
radius and the major radius, respectively. Since we are
interested in the high-frequency fishbone, we make the
ordering, v�vA � O �´�, with v the mode frequency and
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vA the usual shear Alfvén frequency [6,7]. We also make
the ordering v�vc � O �´�, with vc the gyrofrequency
of the energetic ions. The core plasma toroidal beta value
is ordered as bc � O �´2�. In typical tangential injection
discharges in PBX [3,4], bc � 1.3%, and the toroidal beta
value of the energetic ions is estimated as [4] bh � 0.4%.
Note that these are volume-averaged beta values. Since
we lack the detailed experimental data on the energetic
ion pressure profile in PBX, we assume that it is similar
to DIII-D [5] and PLT [9], where similar neutral beam
injection discharges were carried out. Therefore, we take
the beta value of the energetic ions at the magnetic axis,
bh,0 � 8bh (we assume that the peaking factor of beam
ion pressure in PBX is similar to that in DIII-D [5]). This
can be justified by the fact that most of the fusion reactions
in PBX (�90%) occur in the center of the plasma (inside
the half minor radius) and the fusion reactions in PBX
are dominated by beam-target reactions [4]. We make
the ordering bh,0 � O �´2�, bh�bh,0 � O �´� � bh�bc.
Note that in the above orderings, only in the region
very near to the magnetic axis, the beam ion pressure is
comparable to the core plasma pressure; in most regions
of the plasma, the beam ion pressure is much smaller than
the core pressure.

The stability analysis is carried out by following the gen-
eralized variational principle [6,7]. The energy functional
is given by

D�v� � dI 1 dWMHD 1 dWk , (1)

where dI is the usual MHD kinetic energy functional.
dWMHD is the usual MHD potential energy functional.
The last term is the nonadiabatic contribution of the en-
ergetic ions. The perturbation is assumed to be in the form
� exp�2i�vt 2 z 1 u��, with z and u the toroidal angle
and the poloidal angle, respectively. The nonadiabatic part
of the perturbed distribution of the hot component, df, is
given by the drift kinetic equation
© 2001 The American Physical Society
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where j� is the usual fluid displacement. q is the MHD
safety factor; r is the coordinate of the minor radius;
E � y2�2; l � m�E, m � y

2
��2B, with y� �yk� the per-

pendicular (parallel) velocity and B the equilibrium mag-
netic field. k is the curvature of the equilibrium magnetic
field. F�r , E, l� is the equilibrium distribution of the ener-
getic ions. In Eq. (2), we have dropped the effects of finite
radial drift of energetic ions, which is related to the cross-
ing resonance inducing the low-frequency fishbone insta-
bility in the tangential injection case [8] and is beyond the
scope of this paper.
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with mh the mass of the beam ion.
The usual minimization of dWMHD gives [6,7]

j� � j0H�rs 2 r� �er 2 ieu� exp�2i�vt 2 z 1 u�� ,

(4)

= ? j� 1 2k ? j� � 0 , (5)
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where j0 is a constant. H�x� is the Heaviside step function.
rs is the minor radius of the singular surface where q � 1.
er and eu are the radial unit vector and the poloidal unit
vector, respectively.

Before solving the drift kinetic equation, in addition to
neglecting the effects of finite radial drift, we assume that
y� ø yk; this is reasonable for the tangential injection
case [8]. With these approximations, substituting Eqs. (4)
and (5) into Eq. (2c), we found that

H1 � 22E
j0

R
H�rs 2 r� exp�2i�vt 2 z �� . (8)

In obtaining Eq. (8), we have used k � �eu sinu 2

er cosu��R.
Since we are interested in the mode with frequency

around the circulation frequency and the weak instability
case, we search the solution satisfying

�v 2 �z � � �v 2 v�� ø �u . (9)

The solution can be readily found:

df �
v� 2 v

v 2 y�R
H1≠EF , (10)

where we have used the approximation 	 �z 
 � y�R, with
	x
 � �1�tb�

H
du �x� �u�, and tb �

H
du �1� �u�, since

y� ø yk, yk � y.
To proceed, we adopt the model slowing-down equi-

librium distribution for the purely circulating (y� ø yk,
yk � y) energetic ions

F � c0�r�E23�2d�l�H�E0 2 E� , (11a)

c0�r� � ph�r���23�2pmhBE0� , (11b)

where E0 � y
2
0�2 is the birth energy of the beam ions and

ph�r� is the beam ion pressure.
Substituting Eq. (8), Eq. (10), and Eq. (11), respec-

tively, into Eq. (3), we found that

dŴk � dWk

¡ ∑
2pRj2

0

µ
rsB
2R

∂2∏
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dŴk,d �
2

´2
sVc

∑
1
3

1
1
2

V 1 V2 1 V3 log

µ
1 2

1
V

∂∏
28p

B2

Z rs

0
dr q

d
dr

ph�r�

�
2bh,0

´2
sVc

∑
1
3

1
1
2

V 1 V2 1 V3 log

µ
1 2

1
V

∂∏
, (13)
dŴk,s �
p

2 bs
h

V2

V 2 1
, (14)

where b
s
h is the beam ion beta value volume av-

eraged within the singular surface. �V, Vc, VA� �
�v, vc, vA��vz0, vz0 � y0�R. ´s � rs�R. In writing
Eq. (14), we have dropped a few higher order terms.
Note that the V dependence of dŴk found here for the
tangential injection case is different from the perpendicu-
lar injection case [6,7]. This difference results from the
different 	 �z 
.
Now, since dŴMHD is a higher order term comparing
to dŴk �dŴMHD�dŴk � O �´��, it can be dropped out of
the energy functional, and we obtained

D�v� � 2i
V

VA
1 dŴk . (15)

Consider the weak unstable case, V � Vr 1 iVi ,
Vi ø Vr . The real and imaginary parts of the dispersion
relation are obtained by setting D�v� � 0,
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Equation (17) indicates that instability can be found only when bh,0 exceeds a critical value given by

bcrit
h,0 �

´2
sVc

2pVAV2
r

. (18)

The real frequency is found through setting Vi � 0 and replacing bh,0 by b
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h,0 in Eq. (16),
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Writing bh,0 � b
crit
h,0 1 Dbh,0, we found from Eq. (17)

the growth rate
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1
Vr

1 1 1 Vr 1
V2

r

12Vr
1

p
2 pb

s
hVAV2

r
2V2

r 2Vr

�Vr21�2

.

(20)

Generally, Eqs. (18)–(20) determine the critical central
beam ion beta, the real frequency, and the growth rate of
the internal kink mode destabilized by energetic circulat-
ing ions through circulation resonance at a high frequency
comparable to the circulation frequency of the beam ions.
For PBX parameters, B � 0.84T , vz0�2p � 190 kHz,
mi � mh � 2mp , ni � 1.7 3 1013 cm23, R � 130 cm,
´s � 1�9. The central beta value of the beam ions is
estimated as bh,0 � 3.2%, and the beam ion beta value
volume averaged within the singular surface is estimated
as b

s
h � 1.4%; the magnetic shear at the singular surface

is estimated as s � 0.4. We found from Eq. (18) that
b

crit
h,0 � 3.2%, which is approximately the central beam ion

beta likely attained in PBX. From Eq. (19), we found that
Vr � 0.83 �vr�2p � 160 kHz�, which is in good agree-
ment with the experimental data �vr�2p � 150 kHz�
[3]. Since the neutron rate reduction induced by the high-
frequency fishbone in PBX is 1% 6%, and the fusion
reactions in PBX are dominated by the beam-target
reactions [3,4], we may take Dbh,0�b

crit
h,0 � 3%. Then,

from Eq. (20) we obtained Vi � 6 3 1023 [vi �
1��140 msec�], which is in good agreement with the
experimental data [vi � 1��125 msec�] [3].
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In summary, we have shown that energetic circulating
ions can destabilize the internal kink mode at a high fre-
quency comparable to the circulation frequency of the en-
ergetic ions when the central beam ion beta exceeds a
threshold value. Such an instability induced by the cir-
culation resonance has a threshold value of central beam
ion beta, real frequency, and growth rate in general agree-
ment with the high-frequency fishbone instability observed
in experiments [3].
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