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Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma
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Collisions have traditionally been neglected in calculating the shielding around a small spherical
collector in a plasma, and the plasma flow to the collector. We show analytically that, in dusty plas-
mas under typical discharge conditions, ion charge-exchange collisions lead to the buildup of negative-
energy trapped ions which dominate the shielding cloud in the nonlinear region near a dust grain and
substantially increase the ion current to the grain, even when the mean-free path is much greater than
the Debye length.
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Introduction.—The problem of electrostatic shielding
around a small spherical collector immersed in a non-
streaming plasma, and the related problem of electron and
ion flow to the collector, date to the very origins of plasma
physics. The initial work by Langmuir and collaborators
[1] in the 1920s was directed toward understanding of elec-
trostatic probes. This was followed by important papers in
every subsequent decade [2–9], in some cases aimed at un-
derstanding sheaths around spacecraft, and more recently
by the physics of dusty plasmas [5–15]. “Dust grains,” i.e.,
micron-scale particles, typically acquire a negative charge
of the order of thousands of electron charges when im-
mersed in a plasma. As a result, they interact strongly
with each other, exhibiting a variety of interesting collec-
tive behaviors. All studies of dusty plasma begin with a
model for the grain charge, which in steady state is deter-
mined by the requirement that the electron current to the
grain be balanced by an equal and opposite ion current (the
floating condition), and a model for the shielded interac-
tions of grains with each other and with external forces.

For over seventy years, theoretical calculations of
shielding and grain charging have neglected electron and
ion collisions. The initial justification [1] for this was that
the mean-free path lmfp in a discharge is typically long
compared to other lengths of interest. When collisions
are neglected, all of the ions and electrons in the vicinity
of the collector, in steady state, must be positive energy
particles which come in from the ambient plasma �r � `�
and either hit the collector (in which case it is usually
assumed that they are absorbed) or fly back out to r � `.
However, Bernstein and Rabinowitz [3] pointed out in
1959 that negative-energy positive-charge ions can be
created if there are occasional collisions in which ions
lose energy. These ions will be trapped in the potential
well around a negatively charged collector, and, even if
the collision frequency n is very small, the trapped ion
density nt�r� will build up indefinitely until it is limited
by other collisional processes which result in the loss of
trapped ions [3,4,6,9]. Goree [9] noted the density of
trapped ions is independent of n in steady state, since
the creation and loss rates are both proportional to n.
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Many authors commented on the probable importance of
trapped ion effects, but analytic theories continued to be
collisionless, because it was generally [3,4,6,9,10] thought
that inclusion of trapped ions would render the problem
intractable. However, in 1992, Goree confirmed in a
Monte Carlo simulation that the total number of trapped
ions can be quite significant, and very recently Zobnin
et al. [10] used Monte Carlo simulations to calculate the
trapped ion density profile nt�r� and the self-consistent
potential f�r� for the first time.

In this paper, we introduce a fully analytic method for
calculating the distribution of trapped as well as untrapped
ions, and we solve self-consistently for nt�r�, f�r�, and the
untrapped ion density nu�r�. We show that under typical
conditions the inner part of the shielding cloud is made up
primarily of trapped ions, and that f�r� is thus different
from the results of the collisionless theories. The presence
of trapped ions also significantly increases the ion flow
to the grain. Our analytic results appear to be in general
agreement with the Monte Carlo calculations of Zobnin
et al. [10], and provide a general theoretical framework
for elucidating the plasma response to a charged grain.

It should be noted that in this paper we consider only the
case of an isotropic, nonflowing plasma, which is relevant
to dust grains in bulk plasma, e.g., in microgravity experi-
ments. In laboratory discharges, dust typically resides in
or near the sheath, where there are strong ion flows that
break the symmetry assumed here. We are looking into
the extension of the present methods to that case.

Model and calculation.—We consider a single sta-
tionary grain of radius a, immersed in a nonflowing
plasma consisting of singly charged positive ions and
neutral molecules, each assumed Maxwellian with tem-
perature T , and Maxwellian electrons with temperature
Te. The ambient plasma density is n0. We assume the
following: (i) steady state; (ii) a ø lD , where lD �
�4pn0e2�T21

e 1 T21��21�2 is the Debye length; (iii) ions
are subject only to charge-exchange collisions with neu-
trals, with an energy-independent collision frequency n;
(iv) n is small, in the sense that the probability of
a collision is small during the time for an untrapped
3)�5278(4)$15.00
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ion to traverse the potential well, or for a trapped ion
to make one rotation in its orbit. Roughly speaking,
this is equivalent to the assumption that lmfp ¿ lD ;
(v) absence of significant centrifugal potential barriers,
the primary assumption of orbital-motion-limited (OML)
theory [3–8,11–12], discussed below in more detail.

Trapped ions are created by ion-neutral charge-exchange
collisions. Every time a collision occurs, the old ion
disappears, and a new ion is created whose velocity is
chosen at random from the neutral molecule distribution
function exp�2my2�2T �. Consider the class of trapped
ions which were created by collisions which occurred
at radial location r 0, and let h�r, y, u; r 0� be the phase-
space distribution function of these ions. Here, r is the
present location and v � �y, u� is the present velocity of
the ion; u is the angle between r and v . Because of
spherical symmetry, h�r, y, u; r 0� does not depend on the
angular coordinates of r and r0, nor on the azimuthal co-
ordinate of v . If trapped ions were collisionless, then
the steady-state Vlasov equation would tell us that the
distribution function h�r , y, u; r 0�, for a given birthplace
r 0, is a function only of the constants of the motion, to-
tal energy ´ � 1

2my2 1 ef�r� and angular momentum
L � myr sinu. Since the ions are born Maxwellian, this
distribution must be of the form

h�r , y, u; r 0� � C�r 0� exp

µ
2

my2

2T
2

ef�r�
T

∂
. (1)

Actually, trapped ions do undergo charge-exchange col-
lisions, and every time this happens an ion is lost from
h�r, y, u; r 0�. But we have assumed that the collision fre-
quency n is energy independent, and that the time between
collisions n21 is long compared to the orbit period of a
trapped ion. Thus the correlation between r and r 0 is lost,
and any ion in h�r, y, u; r 0� is equally likely to have been
lost to a collision. So h�r , y, u; r 0� must be of the form
(1), even with collisions.

However, the Maxwellian distribution (1) is not popu-
lated for every value of y and u. Several conditions
must be satisfied. First, the ion must have negative total
energy, i.e.,

1
2my2 , 2ef�r� � 1

2my2
1�r� , (2a)

otherwise it is not a trapped ion. A second condition is
that the total energy ´ must be greater than ef�r0�, since
the ion was born at r 0 with positive kinetic energy, i.e.,

ef�r0� 2 ef�r� #
1
2my2. (2b)

A third condition is that the ion must have enough angular
momentum that its trajectory does not intercept the grain
radius a. (Since we assume that the trapped ion period is
short compared to the collision time, we treat ions which
intercept the grain as if they are lost immediately, and just
delete them from the trapped ion distribution.) This leads
to a requirement on y,
�ef�r� 2 ef�a��
a2

r2 2 a2 #
1
2my2, (2c)

and a requirement on u,

sinu .
a
r

s
1 1

2�ef�r� 2 ef�a��
my2 � sinu0�r , y� .

(2d)

We can combine (2b) and (2c) into a condition y
2
0�r , r 0� #

y2, where y
2
0�r , r 0� is the larger of the left-hand sides. Fi-

nally, the phase space coordinates �r , y, u� must be
accessible from r 0, i.e., there must not be any barrier in
the radial effective potential U�r� � ef�r� 1 L2�mr2

which prevents an ion born at r 0, with angular momentum
L � myr sinu and energy ´ � 1

2my2 1 ef�r�, from
reaching r . We shall assume that there are no significant
potential barriers. This is the standard assumption used
in OML theory [3–8,11–12]. We have recently shown
[12,13], that it is well satisfied for untrapped ions, for
a ø lD , and other conditions typical of dusty plasma.
Using the same approach as in Refs. [12,13], we can show
that the assumption is also valid for trapped ions; details
will be presented in a subsequent publication.

The total number of trapped ions which were born at r 0,
which we shall call 4pr 02g�r 0�, is thus given by integrating
h�r , y, u; r 0� over �r , y, u� with the conditions (2). Every
time one of these ions undergoes a collision, it is lost from
h�r , y, u; r 0�; thus, the loss rate is 4pr 02g�r 0�n. In steady
state, we can set this loss rate equal to the rate at which
trapped ions are created by collisions (of either trapped
ions or untrapped ions) at r 0. This condition determines
the factor C�r 0� in Eq. (1), giving

h�r , y, u; r 0� �
1

4p5�2

µ
2T
m

∂23�2

�nu�r 0� 1 nt�r 0��

3 e2�my2���2T �1�ef�r0�2ef�r���T

3
G�r 0, r 0�R

`
a dr 00 r 002G�r 00, r 0�

, (3)

provided sinu . sinu0�r, y� and y0�r, r 0� , y , y1�r�.
Here,

G�r , r 0� � e2�ef�r���T
Z yi�r�

y0�r ,r 0�
dy y2e2�my2���2T�

3 cos�u0�r , y�� . (4)

Now nu�r� is obtained from the result of OML theory [15],

nu�r� � n0
2p
p

exp

µ
2

ef�r�
T

∂ Z `

p
2ef�r��T

dt t2e2t2

3

∑
1 1

s
1 2

a2

r2

µ
1 1

e�f�r� 2 f�a��
Tt2

∂∏
,

(5)

where the integral is taken only over values of t such that
the argument of the square root is positive. The electron
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density ne�r� is well approximated [4] by a Boltzmann
factor ne�r� � n0 exp�ef�r��Te�. The trapped ion density
nt�r� is obtained by integrating h�r, y, u; r 0� over �y, u; r 0�.
Since nt�r 0� also appears as a source term on the right-hand
side (rhs) of Eq. (3), this procedure actually yields a linear
integral equation for nt�r�,

nt�r� �
Z `

a
dr 0 K�r , r 0�nt�r 0� 1

Z `

a
dr 0 K�r , r 0�nu�r 0� ,

(6)

where

K�r , r 0� �
4

p1�2

µ
2T
m

∂23�2 r 02e�ef�r0���T G�r 0, r 0�G�r , r 0�R`
a dr 00 r 002G�r 00, r 0�

.

(7)

To complete the calculation, it is necessary to solve
Poisson’s equation,

1
r2

d
dr

r2 df

dr
� 4pe�nu�r� 1 nt�r� 2 ne�r�� , (8)

self-consistently with Eqs. (5)–(7). If the collector is a
probe biased to a specified potential f0, the boundary
conditions for (8) are f�`� � 0, and f�a� � f0. If the
collector is a dust grain, f�a� is set equal to the floating
potential ff, i.e., the value for which there is no net elec-
tric current to the grain. In the limit of small n, ff is
determined [14] byµ

1 2
eff

Ti

∂
exp

µ
2

eff

Te

∂
�

µ
miTe

meT

∂1�2

, (9)

typically ff � 23Te. For finite values of n, there are
corrections to the ion flow to the grain, and therefore to
ff, as will be discussed below.

A procedure for doing this calculation is as follows.
Begin with the known solution [15] from OML theory
[Eqs. (5) and (8)] for f�r� and nu�r� if there are no trapped
ions. Calculate a first approximation n

�1�
t �r� to nt�r� by

neglecting the first term on the rhs of Eq. (6). This can be
interpreted as the population of “first generation” trapped
ions created by collisions of untrapped ions. Recalculate
f�r� and nu�r� from Eqs. (8) and (5). Then calculate a
second iterate n

�2�
t �r� by using n

�1�
t �r� in the first term on

the rhs of (6). n
�2�
t �r� can be regarded as the population of

trapped ions created by either the collision of an untrapped
ion or of a first-generation trapped ion. Proceed with this
iteration scheme to convergence.

Results and discussion.—We present the solution of
Eqs. (5)–(9) for a case where the collector is a dust grain at
floating potential, T�Te � 0.04, and a�lD � 0.015. Fig-
ure 1 shows the density nt�r� of trapped ions (solid curve),
and the deviations of the untrapped ion density (dashed
curve) and electron density (dotted curve) from the ambi-
ent value, Dnu�r� � nu�r� 2 n0 and Dne�r� � ne�r� 2

n0. Notice that nt ¿ Dnu ¿ Dne near the grain. For
this case, trapped ions dominate the shielding around the
charged grain out to r � 0.7lD . In Fig. 2, we show Qt�r�,
5280
FIG. 1. Trapped ion density [nt�r�, solid line], deviation of
untrapped ion density from ambient [Dnu�r�, dashed line], and
deviation of electron density from ambient [Dne�r�, dotted line],
all scaled to ambient density n0.

the trapped ion charge enclosed within radius r (solid
curve), and Qu�r�, Qe�r�, respectively, the deviation of
the untrapped ion charge (dashed curve) and of the elec-
tron charge (dotted curve) within radius r from the am-
bient value. All of the Q’s are scaled to the charge on
the grain. Note that Qt . Qu out to r � 1.4lD , where
the grain charge is 42% neutralized. In Fig. 3, we plot
rf�r�. On this semilog plot, an unshielded Coulomb po-
tential would appear as a horizontal straight line, and the
Debye-shielded potential would appear as the oblique dot-
ted line. In the absence of trapped ions (dashed curve),
f�r� differs noticeably from the Debye-shielded potential
for all r . Trapped ions add just enough additional shield-
ing to bring the potential to very nearly the Debye shielded

FIG. 2. Integrated trapped ion charge from r � a to r [Qt�r�,
solid line], deviation of the integrated untrapped ion charge from
ambient [Qu�r�, dashed line], and deviation of the integrated
electron charge from ambient [Qe�r�, dashed line], all scaled to
the charge on the grain.
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FIG. 3. Plots of 2�r�a�ef�r��Te for three different models:
self-consistent potential including trapped ions (solid line), po-
tential with trapped ions neglected (dashed line), and Debye
potential (dotted line).

form for 0.5lD , r , 5lD [At very large r , f�r� must
fall off as r22.] [3,8].

The theory presented above depends on the dimension-
less parameters T�Te and a�lD . In the typical situation for
dusty plasmas in discharges, where a2�l

2
D ø T�Te ø 1,

it is clear that in steady state the trapped ion population
must exceed the untrapped ion population in the region
where there is a strong potential well, i.e., 2ef�r� . Ti ,
since nearly every collision of an untrapped ion results in
the creation of a trapped ion, but only a small fraction of
the collisions of trapped ions result in the loss of a trapped
ion. If T�Te , a2�l

2
D , the trapped ion population falls

off, because many of the newly born ions will have low
angular momentum and immediately fall onto the grain.
In the opposite limit, where T�Te approaches unity, the
trapped ion population again falls off, because many of
the newly born ions will have enough energy to escape to
r � `. These parametric dependences will be discussed
more extensively in future literature.

We note that nt�r� and f�r� do not depend on the value
of n, in the limit of small n. However, collisions also mod-
ify the ion current Fi to the grain, and this effect is pro-
portional to n. An untrapped ion coming in from r � `,
whose trajectory would have taken it into the grain, may
experience a collision before it reaches the grain. This rep-
resents a reduction 2DFi1 in the collisionless ion flux Fi0
to the grain. On the other hand, after a collision (involv-
ing either an untrapped ion or a trapped ion), the newly
born ion may have low angular momentum and fall onto
the grain. This represents an increase DFi2 in the ion flow
to the grain. Both DFi1 and DFi2 are proportional to n,
and thus might be thought to be small. However, it is
clear that, under typical conditions DFi1 ø DFi2, since
DFi2 represents very nearly the entire loss rate of trapped
ions (trapped ions are usually lost via collisions that cause
the new ion to fall onto the grain, only occasionally by
collisions that boost the new ion into the untrapped popu-
lation), whereas DFi1 represents only a small fraction of
the creation rate of trapped ions (those that result from the
collision of an untrapped ion which would have hit the
grain). Thus, collisions result in an increase in ion flow to
the grain, and this increase is in fact large, even for quite
small values of n, since it is multiplied by a large factor
of the order of nt . This change in Fi can substantially
suppress the floating potential ff . Calculations of Fi and
ff have been performed and will be presented in future
literature.

In conclusion, we wish to point out that the presence of a
large population of trapped ions can profoundly change the
interaction of a grain with other grains, and with external
forces. We have previously argued [15] that shielding by
untrapped ions cannot lead to a net attractive electrostatic
force between negatively charged grains. But a grain with
its trapped ion cloud can behave similar to a “classical
atom”; the trapped ion cloud can be polarized, thereby
shielding the grain from electric fields [6,9], and possibly
leading to van-der-Waals– type attractive forces between
grains. We are in the process of calculating these effects.

We thank W. M. Manheimer for convincing us that
trapped ions are probably dominant. This work was sup-
ported by the Office of Naval Research, and by NASA.
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