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A novel approach for the generation of ultrabright attosecond electron bunches is proposed, based on
acceleration in vacuum, by a short laser pulse. The laser-pulse profile is tailored such that the electrons
are both focused and accelerated by the ponderomotive force of the light. Using time-averaged equations
of motion, analytical criteria for optimal regime of acceleration are found. It is shown that for realistic
laser parameters, a beam with up to 106 particles and normalized transverse and longitudinal emittances
,1028 m can be produced.
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When a powerful laser beam is focused on a free elec-
tron in vacuum, the ponderomotive force of the laser light
pushes electrons in the direction opposite to the gradient of
the light intensity and can accelerate them to relativistic en-
ergies. Significant progress has been made on laser-based
particle acceleration in vacuum in recent years both theo-
retically [1–3] and experimentally [4,5]. Despite these
advances, many challenges remain.

Because the ponderomotive force is proportional to the
energy flux of the light, laser acceleration requires a tightly
focused high-power beam. A small radial size of the beam,
however, results in the large transverse gradient which
makes the electron motion unstable in the radial direction.
Also, the amplitude of electron oscillations along the polar-
ization direction (so-called quiver motion) increases with
the magnitude of the electric field, and for a small focal
spot can easily exceed the beam size, causing the electrons
to be scattered in the transverse direction. As a result,
the electron leaves the acceleration zone prematurely and
the phase volume of the accelerated electron beam turns
out to be relatively large. This regime of acceleration has
been intensively studied theoretically [1,3] and was also
observed in the experiment [4,5].

In this paper we propose a novel approach to the laser
acceleration that avoids the transverse scattering during ac-
celeration and results in an extremely small phase volume
for the electron beam. We also determine the maximum
electron energy that can be obtained in such acceleration
and show how it scales with the laser parameters.

Since a laser beam in the lowest approximation can be
considered as a plane electromagnetic wave, we first review
the main results of the electron motion in a plane electro-
magnetic wave [6]. Let Ax�z 2 ct� be the x component of
the vector potential corresponding to a plane wave propa-
gating in the z direction. The electric and magnetic fields
in the wave are Ex � By � ≠Ax�≠z. Solving equations of
motion and assuming that initially, when Ax � 0, the ac-
celerating electron was at rest one finds that py � 0, and
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(1)

where A is the dimensionless vector potential, A �
eAx�mc2. Although this solution is valid for arbitrary
Ax , in the laser pulse the vector potential can be repre-
sented as an oscillation with the frequency v and a slowly
varying envelope such that Ax ! 0 when t ! 6`. In the
limit A ¿ 1, the electron is accelerated to relativistic en-
ergies. The velocity in the z direction inside the wave
is close to the speed of light, yz�c � 1 2�A2. We can
estimate the interaction (overtake) time during which the
particle remains within the wave packet of length l as
Tint � l��c 2 yz� � lA2�2c and the corresponding in-
teraction length Lint

Lint � cTint � l
A2

2
. (2)

It follows from Eq. (1) that after the wave overtakes the
electron, the electron comes to rest. Hence, there is no net
energy gain in the plane wave, Dgmc2 � 0. This result
remains also valid in a more general case when the initial
velocity of the electron is not equal to zero.

Another important characteristic of the particle motion
in the wave is the amplitude of the high-frequency quiver
oscillations perpendicular to the direction of the propaga-
tion of the wave. This amplitude Dx is [6]

Dx � Al- , (3)

where l- � c�v.
In order to obtain a net energy gain one has to take

into account the three-dimensional geometry of the laser
beam. To simplify the description of electron motion in
this case, we will use equations of motion averaged over
fast oscillations in the wave [7–10]:

dx̄i

dt
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m
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2
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, (4)
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where t is the proper time, x̄i and p̄i are the four-
dimensional coordinate and momentum vectors averaged
over the fast oscillations, and the ponderomotive potential
U is equal to the averaged over the proper time square of
the four-dimensional vector potential of the laser light,
U � 2�AiA

i� with Ai � eAi�mc2. Equations (4) are
valid if the number of oscillations that the particle executes
in the laser beam is large. In addition, the gradient scale
of the laser beam in the transverse direction should be
much larger than the amplitude of the quiver oscillations.
An important advantage of using the averaged description
is that in paraxial approximation U depends only on the
absolute value of the transverse component of the vector
potential.

In the lowest order of paraxial approximation the electric
field in the laser beam is given by a linear combination of
eigenmodes El,m [11]

El,m � ReE
l,m
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where E
l,m
0 is the amplitude value of the electric field, el,m

is a unit polarization vector perpendicular to the z axis,
cl,m�r , z� is the phase, s�0 is the rms beam size in the
transverse direction, s� � s�0

p
1 1 z2�Z2

R , ZR is the
Rayleigh length, sz is the beam pulse length, and Hl is
the Hermite polynomial.

Consider first a Gaussian pulse corresponding to the
lowest mode of the laser beam with l � m � 0 and the
amplitude electric field E

0,0
0 � E0. Introducing the ampli-

tude A0,

A0 �
el-

p
2 mc2

E0 , (6)

we find for the ponderomotive potential
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One can also find the energy E of the laser pulse in terms
of A0,

E �

p
2p

4
A2

0
ZRsz

l-re
mc2. (8)

Consider now the acceleration of a particle located ini-
tially at rest on the axis, r � 0, z � z0. Because of the
axisymmetry the particle will remain on the axis all the
time, and the averaged equations of motion reduce to

dz
dt

�
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,
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� 2

mc2
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≠z
, (9)

where g �
p

1 1 p2
z �m2c2 1 U0 and U0 is now evalu-

ated at r � 0.
For given parameters of the laser pulse there is an op-

timal regime of acceleration which is determined by a
special relation between the Rayleigh length and the in-
teraction length. If the Rayleigh length is too large, then
in the region of length Lint near the focal point the laser
pulse can be considered to a good approximation as a plane
wave. As was pointed out above, in this case there is no
energy transfer between the wave and the particle. On the
other hand, if the Rayleigh length is very short, then due to
the radial expansion of the laser beam, its amplitude decays
before the interaction occurs on the time scale Tint. Hence
the optimal relation between ZR and Lint corresponds to
the case when they are of the same order (for A0 ¿ 1),

ZR � Lint � szA
2
0�2 . (10)

To find the optimal regime of acceleration, we solved
numerically Eqs. (9) for several values of A0 while vary-
ing z0 and ZR . The final value g, gf , as a function of the
ratio sz�ZR is shown in Fig. 1. As follows from this fig-
ure the maximum gf is achieved when ZR � szA

2
0�2, in

agreement with Eq. (10), and is approximately given by

gf �
A

2
0

2
. (11)

In the optimal regime the particle’s initial position is close
to the laser focus, z0 � 0.

The optimization for a constant value of A0 and vary-
ing ZR means varying laser energy. We also carried out
optimization for a constant laser energy E . In this case
the optimal regime is approximately given by the follow-
ing relation:

ZR � sz
A

2
0

4
, (12)

and the value of gf in optimum is still given by Eq. (11),
if the particle is initially located near the focus, z0 � 0.
The value of gf can be somewhat increased by putting the
particle at z0 , 0, and making A0 larger, but this regime
is less preferable because it also increases the amplitude of
the quiver oscillations.
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FIG. 1. The value of gf after acceleration in a laser pulse given
by Eq. (7) as a function of the ratio sz�ZR for three different val-
ues of A0: 1 2 A0 � 15, 2 2 A0 � 10, and 3 2 A0 � 5.
Each point on these plots was optimized with respect to the ini-
tial position z0. The dots on the curves indicate the maximum
values of gf for a given A0.
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From Eqs. (11) and (12) one can find an analytical for-
mula for gf in terms of the laser parameters,

gf �
23�4

p1�4

µ
E

mc2

∂1�2 �l-re�1�2

sz
. (13)

Note that gf scales as E 1�2 and inversely proportional to
the bunch length. This emphasizes the effect of shortening
of the laser pulse for effective acceleration.

As a numerical example, we assume a Gaussian laser
beam with E � 1 J, l � 0.8 mm, and the FWHM pulse
length 50 fs. Then the optimal parameters are

A0 � 5.2, ZR � 42 mm, s�0 � 1.4 mm , (14)

and Eq. (13) gives gf � 13.
To verify the accuracy of the averaged equations, we

also solved the exact three-dimensional equations of mo-
tion for an electron moving in a Gaussian laser beam. The
comparison of g as a function of current position z for the
averaged and exact equations of motion for the laser-pulse
parameters given by Eqs. (14) is shown in Fig. 2. We see
that the solution of averaged equations well approximates
the smoothened behavior of the exact equations, with the
final value of gf very close to each other. In addition to
the oscillations of g�z�, the exact solution also demon-
strates the quiver motion of the electron during accelera-
tion. The amplitude of the quiver oscillations relative to
the beam waist for the above example can be estimated us-
ing Eqs. (3) and (12),

Dx
s�0

�
A0l-

s�0
�

2l-�ZR�sz�1�2

�ZRl-�2�1�2 �

s
8

l-

sz
. (15)

For our parameters, we find Dx�s�0 � 0.4, in good
agreement with simulations, which is small enough to
avoid the scattering phenomenon discussed above. Note
that acceleration gradient corresponding to Fig. 2 is in the
range of �50 GeV�m.

Equation (13) for the final value of g refers to the case
when the electron is initially at rest. One might think that
it is possible to achieve much larger final energy by re-
peating the acceleration process sequentially several times.
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FIG. 2. Comparison of the exact (oscillating curve) and aver-
aged (smooth curve) solutions for the example of Eqs. (14).
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Unfortunately, it turns out that this is not true. For an elec-
tron moving in the direction of the laser beam with the
initial energy mc2g0, inside the laser beam it is acceler-
ated to gf � g0A

2 (we assume g0 ¿ 1) [6]. Although
this value is 2g0 times larger than for the case of g0 � 1
[see Eq. (11)], it turns out that the interaction length in this
case also increases and is of the order of Lint � 2lg0A

2.
Requiring again ZR � Lint, for a given laser energy, we
find that A decreases with the growth of g0 resulting in
the final energy of acceleration, by an order of magnitude,
that is the same as Eq. (13). At the same time, the ampli-
tude of the quiver oscillations in this regime increases with
g0 as Dx � 2g0Al- making it more prone to scattering.
For these reasons, we limit our analysis below by the case
g0 � 1.

The above results refer to the special case of particles
initially located on the axis. Off axis particles in a Gauss-
ian laser beam are accelerated by the radial ponderomotive
force and are quickly expelled from the beam in the radial
direction. This instability of motion can be avoided if one
creates a potential well in the radial direction that focuses
the accelerating particles toward the axis [12,13]. Experi-
mentally such focusing has been recently demonstrated in
Ref. [14]. It can be achieved by superposition of a Gauss-
ian mode given by Eq. (5) with l � m � 0 and higher-
order modes of the laser light with l, m $ 0. For example,
a linear combination of l � 1, m � 0 and l � 0, m � 1
with the same polarization vectors e1,0 � e0,1, equal am-
plitudes and relative p�2 phase shift, so that E1,0 � iE0,1

has the following ponderomotive potential U1:

U1�r, z, t� �
A2

1r2s
2
�0
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(16)

where A1 is the dimensionless vector potential. This pon-
deromotive potential is axisymmetric and has a minimum
on the axis, at r � 0. If the Gaussian mode does not in-
terfere with the higher-order mode, the ponderomotive po-
tentials add, U � U0 1 U1, and for the energy of the U1
mode large enough the total potential exhibits a minimum
in the radial direction, as shown in Fig. 3.

To avoid interference of the modes (7) and (16) one can
either use different frequencies or the same frequency with
orthogonal polarization of the modes, e0,0 ? e0,1 � 0.

We performed computer simulations for the two-mode
acceleration scheme assuming that the modes have the
same frequency, equal Rayleigh lengths and sz , with the
energy E0 � 1 J (Gaussian beam), E1 � 1.3 J (second
mode), l � 0.8 mm, and sz�c � 21 fs (50 fs FWHM).
A collection of particles was initially uniformly distributed
near the laser focus and the particle orbits were tracked
using the averaged equations of motion. The results pre-
sented below refer to the case when initially electrons oc-
cupied the volume r , r0 and z1 , z , z2 with r0 �
0.8 mm, and z1 � 1 mm, z2 � 10 mm and initial zero ve-
locity. We found that the transverse motion in this case
was stable, and that g averaged over particles was very
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FIG. 3. Radial profile of the ponderomotive potential (in arbi-
trary units) for the Gaussian mode (1), the second mode (2), and
their sum (3) when the modes have the same frequency and the
energy of the second mode is 1.3 times larger than the energy
of the first one.

close to the smooth curve shown in Fig. 2. The relative
energy spread after acceleration (rms) was Dg�g � 3%.
The normalized transverse emittance of the accelerated
electrons, defined by ex � g���x 2 �x��2� ��x0 2 �x0��2� 2

��x 2 �x�� �x0 2 �x0���2	1�2, with the averaging over the
ensemble of particles, was ex � 8 3 1027 cm.

We also observed an extremely small longitudinal emit-
tance of the bunch. The longitudinal phase space at the
point of the minimum bunch length is shown in Fig. 4.
The minimal rms bunch length is about 0.03 mm, or 100
attoseconds, with the normalized longitudinal emittance
ez � 1026 cm.

The maximum number of electrons that can be acceler-
ated in such a bunch will be limited by the space charge
effect and it can be estimated as follows. The transverse
electric field in the bunch is E� � eNg�s

2
�, where N is

the number of electrons. Because of the relativistic cancel-
lation of the magnetic and electric forces the net transverse
force has an additional factor g22

F� �
eE�

g2 �
e2N

gs
2
�

. (17)

After acceleration, the transverse momentum of electrons
p� will result in the radial expansion of the beam on the
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FIG. 4. Longitudinal phase space.
time scale t � s��y� � mgs��p�. The contribution of
the space charge (SC) force to p� during expansion is
Dp�SC�

�
� F�t � m2c2reN�s�p�. To avoid the emit-

tance dilution due to the space charge, we require that
Dp�SC�

�
, p� yielding

N ,
s�

re

µ
p�

mc

∂2

. (18)

For our parameters this gives N & 2 3 105 106.
To illustrate the extraordinary quality of such a beam, we

calculate its brightness B defined as the number of particles
divided by the product of the normalized emittances:

B �
N

exeyez
. (19)

For the parameters of the beam described above, B � 3 3

1023 1.5 3 1024 cm23 which is 4–5 orders of magnitude
higher than in the best electron sources available today.
A beam with such brightness opens new opportunities for
generation of coherent x-ray radiation as well as extremely
short (attosecond) electromagnetic pulses.

In summary, we used averaged equations of motion for
a relativistic electron to study laser acceleration in vacuum
in the regime that avoids scattering of the accelerating elec-
trons in the radial direction. A simple analytical formula
for the electron energy is found, and it was shown that both
effective acceleration and focusing can be achieved with
the use of the radial profiling of the laser beam. The re-
sulting electron beam is characterized by extremely small
longitudinal and transverse emittances.
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