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Instability and Equilibration of Centrifugally Stable Stratified Taylor-Couette Flow
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The flow between two concentric cylinders, V �r�, is studied analytically and computationally for
a fluid with stable axial density stratification. A sufficient condition for linear, inviscid instability is
d�V�r�2�dr , 0 (i.e., all anticyclonically sheared flows) rather than the Rayleigh condition for centrifu-
gal instability, d�Vr�2�dr , 0. This implies a far wider range of instability than previously identified.
The instability persists with finite viscosity and nonlinearity, leading to chaos and fully developed tur-
bulence through a sequence of bifurcations. Laboratory tests are feasible and desirable.
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The Taylor-Couette problem is the flow between two
vertical, rotating, concentric cylinders that are infinitely
long. It has a steady, axisymmetric, viscous solution with
the azimuthal velocity profile,

V �r� � Ar 1 B�r . (1)

Here, A � �r0V0 2 r1V1���r2
0 2 r2

1 �, B � r0r1�r1V0 2

r0V1���r2
1 2 r2

0 �, and �r , V �0,1 are the radius and veloc-
ity of the inner and outer cylinder, respectively.

A very large number of theoretical and experimental
studies of this problem have been performed for fluids with
uniform density (e.g., the classic treatise of Chandrasekhar
[1], the experimental study of Andereck et al. [2], and the
survey of Tagg [3]). It is a canonical shear flow that is
easily realized in the laboratory, and it is considered a
paradigm for transitions in nonlinear dynamical systems.

This paper concerns the Taylor-Couette flow of a fluid
with a stable density stratification, which provides a restor-
ing buoyancy force. The study of rotating, stably stratified
flows is of particular relevance for geophysical applica-
tions, where such flows are widespread due to the earth’s
rotation and gravity. This problem was first studied by
Thorpe [4], who mainly investigated the analogy of the
stratified Taylor-Couette flow with the problem of rotat-
ing Bénard convection. No further studies on this problem
were published until the work of Boubnov et al. [5], who
investigated experimentally and theoretically the instabil-
ity of this flow as a model for ocean-flow instabilities. Hua
et al. [6] studied this problem computationally and repro-
duced the main features seen in the experiments. Further
studies of this problem are reported in Boubnov et al. [7,8],
and Caton et al. [9], whose experiments show a primary
bifurcation from an axisymmetric state to an oscillatory
state of confined internal waves and a secondary bifurca-
tion with drifting, nonaxisymmetric vortices.

A common feature to all these stratified studies (except
Thorpe [4]) is that the outer cylinder is at rest. Recall
0031-9007�01�86(23)�5270(4)$15.00
the famous criterion for axisymmetric, centrifugal insta-
bility in an inviscid fluid, originally due to Rayleigh and
extended to stratified fluids by Ooyama [10]:

d�Vr�2

dr
, 0 . (2)

When the outer cylinder is at rest, this condition is satisfied
for any rotation rate of the inner cylinder.

For nonzero viscosity, n, we can define the Reynolds
number,

Re � 0.5�V1 2 V0� �r1 2 r0��n . (3)

Finite values of Re stabilize the flow and shrink the
unstable regime. Even in the absence of linear insta-
bilities, for large enough values of Re, finite amplitude
perturbations can grow and possibly lead to a transition
to turbulence [11].

In this Letter, we study stably stratified Taylor-Couette
flow which is centrifugally stable, i.e., does not satisfy
(2). No other linear instabilities are known to exist in this
regime for unstratified Taylor-Couette flow, e.g., Tagg [3].
Let Ro denote the Rossby number or relative vorticity of
the mean flow:

Ro �
rmV0�rm�
2V�rm�

�
2B

Ar2
m 1 B

, (4)

where V � V�r is the angular velocity and rm is the mean
radius. In this paper, we find that all stably stratified, anti-
cyclonic flows �Ro , 0� are linearly unstable. This insta-
bility regime includes all flows with B�A . 0 as well as
the centrifugally unstable regime with B�A , 2r2. Since
d�V�r�2�dr � Ro4V2�r at r � rm, the centrifugal con-
dition (2) is thus extended to d�V�r�2�dr , 0.

The relative stratification is measured by the Froude
number, which is the ratio between rotation and
stratification,

F � jV�rm�j

, s
2

g≠r

r≠z
. (5)
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Here, g is the gravity acceleration and r is the den-
sity of the fluid. Recall that for stably stratified fluids,
≠r�≠z , 0. We also investigate the nonlinear, viscous
equilibration of the linearly unstable modes, and find that
they are important for a significant range in Re, where
laboratory experiments may be feasible.

First, consider the linear stability problem. We sum-
marize here the main results; a more complete report ap-
pears in [12]. We start with the inviscid, incompressible
Navier-Stokes equations with adiabatically conserved den-
sity (except for molecular diffusion, neglected here), where
the Boussinesq approximation is employed. These equa-
tions are linearized around the vortex solution (1) and a
normal-mode perturbation analysis is performed. The per-
turbation energy balance follows in a straightforward way,

dE�dt � 2V�rm� Ro
Z Z Z

v
uy du dr dz , (6)

where E is the domain-integrated total (kinetic plus
available potential) perturbation energy and u and y are
radial and azimuthal perturbation velocities, respectively.
Thus, perturbations can grow when their integrated
Reynolds stress,

RRR
uy, is anticorrelated with the mean

strain rate, V�rm� Ro.
In the regime where the perturbations are nonaxisym-

metric (azimuthal angular wave number � fi 0), the
relative width of the gap is small [ej�j ø 1, where
e � �r1 2 r0��rm)], the stratification is strong �F ø 1�,
and the flow is anticyclonic �Ro , 0�, an explicit solution
to the normal-mode problem has been derived [12]. In
this regime the exponential growth rate v of the most
unstable mode is

v � 22 RojV�rm�e�je2�Ro. (7)

Note that the apparent singularity in (7) actually leads to
zero growth rates for Ro ! 0. This is related to the fact
that for small Ro the interacting Kelvin waves that lead
to this instability (as will be discussed later) are exponen-
tially boundary trapped [13]. Equation (7) implies that
there are unstable linear modes for all Ro , 0. In the
quasigeostrophic limit �jRoj ! 0�, a commonly used ap-
proximation for large-scale geophysical flows, the flow is
stable, with the growth rate vanishing exponentially fast in
Ro (rather than algebraically as might be expected from
a regular perturbation expansion about Ro � 0). The op-
timal growth rate is shown in Fig. 1 as a function of Ro
for several values of F. For strong stratification �F ø 1�
the growth rate hardly depends on F, consistent with (7).
For large values of F, the growth rate behaves linearly
with 1�F; hence it vanishes as the stratification disappears
(see [12]). The growth rates in Fig. 1 are for optimal
azimuthal and vertical wave numbers l and m. A small
band of vertical wavenumbers m allows growth, and this
band becomes exponentially small as jRoj ! 0, centered
around the value m � �ermF Ro

p
Ro 1 1 �21. This im-

plies that in the limits jRoj ! 0 (no rotation) and Ro !
FIG. 1. Inviscid growth rates as a function of Rossby number,
for different values of the Froude number. The relative gap
width between the cylinders is e � 0.1.

21 (pure rotation) the vertical scale is very small com-
pared to the radial scale. Away from these limits the ratio
of the vertical scale to the radial scale is �F. So, for mod-
erate stratification, the vertical and horizontal scales are
comparable, whereas for strong stratification the aspect ra-
tio is small.

For small viscosity these results remain essentially the
same. For all unstable parameter values, such as shown in
Fig. 1, there exists a critical value of Re, above which the
flow is linearly unstable. In Fig. 2 an unstable eigenmode
is shown for F � 0.01, Ro � 22�3, and Re � 5 3 103,
calculated with the code of [14].

The dynamics of this linear unstable eigenmode can
be understood in terms of two boundary-trapped, shear-
modified Kelvin waves. Along each wall, the Kelvin waves
have a cyclonic propagation tendency due to the rotation
and stratification (i.e., moving in an azimuthal direction
with the boundary on the right when V . 0), which is

FIG. 2 (color). Eigenmode for F � 0.01, Ro � 22�3,
Re � 5 3 103, and e � 0.1. Horizontal velocities are shown
as vectors, and vertical velocities are shown in color where
upward/downward are represented by red/blue, respectively.
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arrested by the anticyclonically sheared mean flow. An
optimal azimuthal phase shift between the arrested Kelvin
waves leads to a u, y correlation that maximizes the growth
rate. In [12] unstable higher radial modes of a differ-
ent nature are reported as well, again for Ro , 0. They
are characterized by a weaker growth rate overall with
an even steeper exponential decay as jRoj decreases. (In
the thin-gap limit �ej�j ø 1�, the equations of the Taylor-
Couette problem reduce to those of a rotating, stratified,
uniform-shear channel flow, for which this instability and
its mechanism are analyzed in [15]. The phenomenon
is related to the wave-wave interaction which is studied
in [16].)

Linear instabilities may be “swamped” by nonlinear ef-
fects. To establish the relevance of the linear instabili-
ties, we study the finite-amplitude, nonlinear evolution of
the linearly unstable flow. The numerical code for these
nonlinear calculations is described in [17]. Here we re-
port on the nonlinear equilibration for fixed F � 0.01 and
Ro � 22�3 as a function of Re in the thin-gap limit,
ej�j ø 1. Based on the computations in [12], we ex-
pect nearly identical behavior for finite-gap widths such as
typically used in experiments (e.g., e � 0.3).

A summary of the results is shown in Fig. 3 in the form
of a bifurcation diagram [18]. The ordinate shows the ex-
tremum of the perturbation vertical velocity, Wext, normal-
ized by the mean azimuthal velocity, Vm.

The flow destabilizes through a pitchfork bifurcation
at Re � 1.1 3 103. Two symmetry-related branches of
stationary stable solutions branch off from this point.
Physically, these solutions are equivalent but correspond
to a phase shift of p� in the streamwise direction. The
symmetry of the problem is such that if Wext is a solution
then 2Wext is also a solution.

In Fig. 4a, stationary solutions along these branches
are shown as points in phase space. The ordinate shows

FIG. 3. Bifurcation diagram as a function of the Reynolds
number.
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the extremum of the normalized, vertical velocity in the
lower right quadrant of the domain. It is always lo-
cated near the boundary. The abscissa shows the phase
difference, �Du, between the upper and lower bound-
ary-trapped waves. Near the first bifurcation, the phase
difference is close to �Du � 0.5p , consistent with the
physical interpretation of phase-locked Kelvin waves (see
Fig. 2) and it decreases for larger values of Re. At a value
of Re � 4 3 103, the stationary solution loses its stabil-
ity to time-dependent perturbations through a supercritical
Hopf bifurcation. For 4 3 103 , Re , 5 3 103, stable
limit cycles are found. In Fig. 4b, a phase-space repre-
sentation of a stable limit cycle for Re � 4.9 3 103 is
shown. We start the description of this cycle at the point
where the amplitude is small and the phase difference is
close to �Du � 0.5p . At this point the perturbation pat-
tern is very similar to the pattern of the unstable linear
eigenmode (Fig. 2). From here the perturbation ampli-
tude grows approximately exponentially by the dynamics
of the linear instability [with the growth rate of Eq. (7)].
In the high-amplitude phase of the cycle, the perturba-
tion deforms from the pattern of the linear mode and Du

decreases. Consequently, the u, y correlation decreases,
and the energy transfer from mean flow to perturbation
decreases [see Eq. (6)]. Hence, the perturbation ampli-
tude decreases by viscous dissipation. During the small-
amplitude phase of the cycle, the sheared mean flow is
again able to arrest the Kelvin wave propagation, and the
perturbation pattern rearranges into a more favorable phase
difference for growth in the next cycle.

At Re � 5 3 103 the limit cycles lose their stability
through a period doubling or flip bifurcation. An example
of this period-2 orbit is shown in Fig. 4c. Similar to the
period 1 cycle, amplitude growth coincides with a phase
difference of �Du � 0.5p . However, after the interval of
increasing Du and decreasing growth, instead of return-
ing to this phase difference, the upper and lower extrema
now “exchange partners” by continuing their movement in
the azimuthal direction, leading to a phase-shifted repeat
of the growth-decay cycle. This period-2 cycle therefore
“encircles” the two symmetry-related period-1 orbits from
Fig. 4b. For even larger Re values, the period-2 orbit be-
comes unstable to small scale perturbations near the wall
and the equilibrated flow behaves more chaotically. We
anticipate that, for Re ! `, a fully developed turbulent
flow will occur with boundary layers near the wall, as pre-
viously found in turbulent Couette flow, with and without
background rotation [19,20].

These results show that for a significant range in Re
the linear eigenmode pattern and its dynamics remain im-
portant. This is dramatically different from the cyclonic
counterpart of this flow regime (i.e., Ro . 0), where the
instability due to Kelvin wave arrest and interboundary
phase locking is absent. In the cyclonic, centrifugally
stable regime, there are no known linear instabilities, and
a transition to turbulence occurs only by nonlinear growth
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FIG. 4. Phase-space plots of solutions. The horizontal axis is the phase difference between the upper and lower boundary-trapped
waves. The vertical axis is the normalized Wext in the lower right quadrant of the domain. (a) Stationary solutions for 1.2 3 103 ,
Re , 4.0 3 103. (b) Period 1 orbit for Re � 4.9 3 103. (c) Period 2 orbit for Re � 5.7 3 103.
of finite-amplitude perturbations at sufficiently high Re
values [20]. The value of Re required to obtain nonlin-
ear growth in cyclonic flow is much larger than the range
of Re studied here.

This newly discovered Taylor-Couette instability is quite
different from other known instabilities in rotating, strat-
ified shear flows. It is not present in unstratified flow. It
does not occur in the quasigeostrophic limit, and it is non-
gravitational and noncentrifugal. It could potentially be of
importance to geophysical flows: it occurs in a relevant
regime of Ro and Re, and it involves the interaction of
shear and inertia-gravity waves, both of which are ubiq-
uitous. Whether the instability is generic to this regime,
though, depends on how essential the role of boundaries
is. The unstable regime is accessible to laboratory experi-
ments that could both verify our predictions and further
develop a different paradigm for transition to turbulence
in a canonical shear flow.
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