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Behavior of Boundary String Field Theory Associated with Integrable Massless Flow
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We put forward an idea that the boundary entropy associated with integrable massless flow of thermo-
dynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show
that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon
energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.
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A lot of effort to reveal the tachyon condensation
mechanism has been made in an attempt to find a stable
vacuum both in bosonic and in supersymmetric string
theory. According to Sen’s conjecture, the closed string
vacuum is realized after an annihilation mechanism of
an open string is completed by the cancellation between
tensions of D-branes and energy of the tachyon [1]. In
string field theory, the main ways to analyze this problem
have been through Witten’s cubic string field theory [2]
and the boundary string field theory (BSFT) [3,4].

In the latter context with a special choice of the tachyon
profile, some evidence to support Sen’s conjecture has
recently been provided in an exact manner [5–8]. In this
Letter we take this latter approach, BSFT. In the Batalin-
Vilkovisky formalism used for BSFT [3], the space-time
string action S is conjectured to satisfy the differential
equation of the form [5–8]

≠S
≠li

� G ijbj . (1)

Here li are the coupling constants of the boundary op-
erators, bj are the b functions, and G ij is the metric in
the space of coupling constants.

On the other hand, ground state degeneracy (g-function)
[9] of the world sheet theory with a boundary perturbation
is also expected to satisfy a differential equation of the
same form as (1). Thus, we expect that string action S
will be identified with g-function. To investigate this cor-
respondence, we analyze this problem using the boundary
sine-Gordon model (BSG) [10] and attendant thermody-
namic Bethe ansatz (TBA). TBA is intended to obtain ther-
modynamic quantities at finite temperature and has also
been used to extract information on the g-function in some
of the exactly solvable models [11].

We consider the process in which single D25-brane de-
cays into a D24-brane by tachyon condensation. In the
context of TBA, temperature in one-dimensional soliton
gas is the renormalization group (RG) scale, which is re-
garded as an order parameter of the tachyon condensation.
The sine-Gordon parameter in the boundary term can be
identified with the inverse of the compactification radius in
BSFT. From this fact, the boundary entropies at two ends
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of the flow have been shown to give an exact ratio of the
brane tensions [5]. In this Letter we find that the tempera-
ture in TBA can be identified with energy of the classical
solution of the tachyon action in BSFT. We provide evi-
dence in support of this correspondence by comparing the
behavior of TBA and the behavior of the classical solution
in BSFT. This correspondence is confirmed by a numeri-
cal calculation, too. We propose that integrable massless
flows generated by TBA provide a description of the open
string action even away from the fixed points.

Massless TBA and g-function as string action.—To
utilize the soliton picture, we begin with the action of
the sine-Gordon model on a segment s [ �0, L� at finite
temperature u

S �
1

4pa0

Z 1�u

0
dt

3
Z L

0
ds

∑
�≠mX�s, t��2 1 G cos

4p

R
X�s, t�

∏

1 z
Z 1�u

0
dt cos

2p

R
X�s � 0, t� . (2)

This system is shown to possess an infinite number of con-
served currents and hence is integrable [12]. This action
permits the field X�s, t�, namely, X25, to be compactified:
X � X 1 R. We impose the Dirichlet boundary condition
at s � L and pay attention to the boundary at s � 0.
We assume that l � R2�4p2a0 2 1 is a non-negative
integer. The strength G gives a mass scale of the soliton/
antisoliton and z gets traded with boundary temperature
uB [11], which plays a similar role to that of the Kondo
temperature in the Kondo problem. Because we are in-
terested in models with conformal invariance in the bulk
s [ �0, L�, the massless limit G ! 0 is taken after TBA
formalism is set up.

The free energy of this model in the L ! ` limit
should be

F
L

� fbulk 2
u

L
lng 1 O�1�L2� , (3)

where g is the ground state degeneracy of the system with
the boundary at s � 0. We focus on this g-function.
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The TBA procedure gives us an equation for the
g-function in terms of the hole energy functions er �r �
1, 2, . . . , l 1 1� [11] (strictly speaking, we are going to
consider just the difference of the g-functions at two
different temperatures):

lng �
l11X
r�1

Z `

2`

dy

2p
kr �y 2 ln�u�uB�� ln�1 1 e2er �y�� ,

(4)

where kr are the kernels whose Fourier transforms are

k̃n� y� �
sinhy

2 sinhy coshly
,

k̃l� y� �
sinh�l 2 1�y

2 sinh2y coshly
,

k̃l11� y� � k̃l� y� 1
1

2 coshy
,

k̃r � y� �
Z `

2`

dy

2p
ei2lyy�pk�y� .

(5)

The hole energies er �y� satisfy the following TBA
equation:

er�y� �
l11X
s�1

ars

Z `

2`

dy0

2p

1
cosh�y 2 y0�

ln�1 1 ees�y0�� ,

(6)

where ars is the incidence matrix of the Dl11-type Dynkin
diagram;

aij � di,j11 1 di,j21 �i, j � 1, 2, . . . , l 2 1� ,

al,j � dj,l21, al11,j � dj,l21 .
(7)

In the two limits, u�uB � 0 and u�uB � `, the above
TBA equation can be solved analytically [11]. We call
the former limit infrared (IR) and the latter ultraviolet
(UV). The difference of the boundary entropies in these
two limits is

gUV

gIR
�

R

2p
p

a0
. (8)

As is conjectured by the g-theorem [9], g decreases along
the RG flow from UV to IR if R . 2p

p
a0; i.e., the bound-

ary perturbation is relevant. g’s in the two limits have been
identified with the respective values of the tachyon actions
[5,13]. We can compare the tensions of D25-branes and
D24-branes, t25 and t24, respectively. In this view, we
should set gUV � t25R and gIR � t24. Thus, we get the
well-known relation t24 � 2p

p
a0 t25.

Even at general u, g is obtained numerically by means
of TBA. We expect that this g will give the string action
even in an intermediate region between the open string vac-
uum and the closed string one. The quantity ln�u�uB� is
identified with the RG scale. As an example, let us calcu-
late the g-function for the l � 2 (i.e., R � 2

p
3a0 p) case
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explicitly. The plot ln�u�uB�- lng is shown in Fig. 1. As is
seen in Fig. 1, g becomes stationary both as ln�u�uB� !
2` and as ln�u�uB� ! 1`. Having this aspect of the
g-function in mind, we would like to gain more insight
into the RG behavior of the tachyon condensation.

Let us consider the behavior of the g-function at large
u�uB in field theory analysis [9]. Let the dimension of the
boundary term be D. We see that the b function of the
coupling z is

b�z � �
dz

d lnjxj
� �1 2 D�z 1 O�z 2� , (9)

where jxj is the inverse of the momentum cutoff at the
boundary and equal to the ratio, �u�uB�21. Thus, we see
the relation z � �u�uB�2�12D� for large u�uB. Upon tak-
ing (1) into account, we obtain the asymptotic behavior

g � gUV 2 c0�u�uB�22�12D� (10)

for small z , where c0 is a constant. We compare this with
the tachyon action later.

Tachyon field and its energy.—Let us consider the
tachyon field with the codimension one, i.e., the case in
which the tachyon field depends on just one coordinate
X25�� x�. The action obtained in [6,7] is

S � t25V25

Z 1`

2`
�a0e2T �T2 1 V �T �� dx , (11)

where V �T � � e2T �T 1 1� is the tachyon potential, �T �
dT�dx, and V25 is the volume of 25-dimensional space-
time. Here we have ignored the higher derivative correc-
tions. Let us set t25V25 to be 1�2p for simplicity and
a0 � 1. Let us consider classical solutions of this action
(11). The equation of motion obtained from (11) is

2T̈ 2 �T2 2 eT V 0�T � � 0 , (12)

which can be integrated once to give

�T � 6eT�2
p

E 1 V �T � . (13)

Here E is a constant that can be regarded as energy. If
21 # E , 0, the tachyon field T �x� looks like a classical

FIG. 1. Boundary entropy for R � 2
p

3a0 p.
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lump. That is, T �x� oscillates between Ti and Tf . The
constants Ti and Tf are, respectively, the negative and
positive solutions of the equation

E 1 V �T � � 0 , (14)

and we set T �0� � Ti (see Fig. 2). For example, setting
E � 21, we see Ti � Tf � 0; thus, T �x� � 0 for all x [
�2`, 1`�, which is on the UV fixed point and regarded as
the tachyonic open string vacuum. Another example is
E � 0 which has Ti � 21 and Tf � 1`. In this case,
(13) is easily integrated to give

T �x� � 21 1 x2�4 . (15)

This form is already used in [7].
Let us evaluate (11) for given energy �21 # E # 0�.

Because (11) naively diverges, it is regularized by intro-
ducing the cutoff like

S�E, R� �
Z R�2

2R�2

dx
2p

�e2T �T2 1 V �T �� . (16)

This cutoff R is identified with that in (2). Using (13),
we see

S�E, R� � 2
RE
2p

1 4
I TR

Ti

dT
2p

e2T�2
q

E 1 V �T � ,

(17)

where we have set T �R�2� � T �2R�2� � TR . From
the form of (17), we conclude S�21, R� � R�2p and
S�0, R� � e�

p
p 1 O�e2R2 �R�. We should note that the

precise value of S�0, `� should be 1 as is seen in (8). In
order to get this precise value, a more careful treatment
to include the higher derivative terms, which we have
ignored in (11), is necessary [7].

Let us concentrate on the region near the UV fixed point,
namely, the region where the condensation is forming. Let
E � 21 1 e2 �0 , e ø 1�. Because jTij, jTRj, Tf ø 1
there, we approximate V �T � � 1 2 T2�2. Thus, we see
2Ti � Tf �

p
2 e. After some elementary calculation,

i T TfT O

V(T)1

-E

FIG. 2. Classical solution.
we obtain, for example,

S�21 1 e2, R� � R�2p 2 e2
p

2 sin�R�
p

2 � 1 O�e3�

for 2
p

2 p , R , 3
p

2 p . (18)

Let us compare the action (18) with the g-function (10) of
the BSG model with TBA. Comparing the scaling of g
with u�uB and the scaling of S with e, we find

e ~ �u�uB�2�12D�. (19)

Then we expect S�21 1 e2, R� � g�u�uB, R� after fixing
the constant c0 in (10) appropriately. Let us consider the
case where the cutoff is R � 2

p
3 p . We have already

shown the flow of the g-function in Fig. 1. The string ac-
tion S can also be calculated numerically by using (14) and
(17). Because, in this case, the boundary interaction has
the dimension D � 1�3, the two scaling parameters E and
u�uB should be related as E 1 1 � �u�uB�24�3. The plots
are shown in Fig. 3, where we put e � 5.4�u�uB�22�3.
Figure 3 indicates the numerical agreement of the scalings
for g and S for

p
E 1 1 & 0.2. When approaching the IR

fixed point, u�uB ! 0 and E ! 0, the higher derivative
correction for (11) must become important in order that
the relation between S and g holds in this region as well.

In this paper we have argued that the behavior of the
boundary entropy g as a function of temperature can be
identified with that of the tachyon action as energy, taking
the boundary sine-Gordon model as an example. Let us
finally argue that this correspondence is generic, not tied
to the particular model studied here.

In Euclidean quantum field theory, inverse temperature
is the size of the circle in the time direction. This is the in-
formation on the energy scale of g which lies at the bound-
ary time circle. If g is to be identified with the value of the
tachyon action (with all the higher derivatives included),
which we have assumed in this paper, the energy scale of
g should translate into that of the tachyon action. The only
possibility is that the constant of motion with time obtained
from the tachyon equation of motion is, in fact, tempera-
ture in the g side.

FIG. 3. g-function and tachyon action for R � 2
p

3 p.
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