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Absence of a Singularity in Loop Quantum Cosmology
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It is shown that the cosmological singularity in isotropic minisuperspaces is naturally removed by quan-
tum geometry. Already at the kinematical level, this is indicated by the fact that the inverse scale factor
is represented by a bounded operator even though the classical quantity diverges at the initial singularity.
The full demonstration comes from an analysis of quantum dynamics. Because of quantum geometry,
the quantum evolution occurs in discrete time steps and does not break down when the volume becomes
zero. Instead, space-time can be extended to a branch preceding the classical singularity independently
of the matter coupled to the model. For large volume the correct semiclassical behavior is obtained.
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On a macroscopic scale, the gravitational field is suc-
cessfully described by general relativity, which is experi-
mentally well tested in the weak field regime. However,
this classical theory must break down in certain situations
where it predicts singularities, i.e., boundaries of space-
time which can be reached by observers in finite proper
time, but beyond which an extension of the space-time
manifold is impossible [1]. An outstanding example is
the big-bang singularity appearing in cosmological mod-
els. At this point curvature diverges whence the classical
theory completely breaks down and has to be replaced by
a quantum theory of gravity. However, up to now there is
no complete quantum theory of gravity, and so the prob-
lem has been approached by first carrying out a symme-
try reduction (by requiring isotropy and homogeneity) and
then quantizing the resulting minisuperspace models which
have only a finite number of degrees of freedom [2,3]. In
the context of these models, as yet, there is no definitive
resolution of the status of the initial singularity. Further-
more, generally the methods used in this analysis can easily
miss some key features of the full theory. Indeed, while it
has been speculated for a long time that quantum gravity
may lead to a discrete structure of space and time which
could cure classical singularities, it has not been possible
to embody this idea in standard quantum cosmological
models.

By now, there are promising candidates for a quantum
theory of gravity. The results reported in this Letter are ob-
tained in the framework of quantum geometry [4] which
does predict a discrete geometry because, e.g., the spec-
tra of geometric operators as area and volume are discrete
[5–7]. Although temporal observables have not been in-
cluded in the full theory, it is clear that the space-time
structure is very different from that used in general rela-
tivity. But this difference can be important only at very
short scales or in high curvature regimes like the one close
to the classical singularity. This leads to the basic question
raised here: What happens to the classical cosmological
singularity in quantum geometry?
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The first step in our approach is the construction of
isotropic states in full quantum geometry; we first quantize
and then carry out a symmetry reduction. This, however,
is not a straightforward problem because the discrete
structure of space, represented by a graph (spin network)
embedded in space, necessarily breaks any continuous
symmetry. But symmetric states can be defined as gen-
eralized states of quantum geometry [8] which can be
used for a reduction to minisuperspace models [9]. Note
that this is not a standard symmetry reduction of the clas-
sical theory because symmetric states are interpreted as
generalized states in the full kinematical quantum theory.
Only the Hamiltonian constraint has to be quantized and
solved after the reduction. An immediate and striking
consequence is that, in contrast to standard quantum
cosmological models, spatial Riemannian geometry is
discrete leading to a discrete volume spectrum [10].
Furthermore, in contrast to standard quantum cosmology,
the same techniques as in the full theory [11] can be used
for the quantization of the reduced Hamiltonian constraint
of the cosmological models [12]. This implies another
difference, namely, that the evolution equation is not a
differential equation in time, but a difference equation
manifesting the discreteness of time [13].

Structure of isotropic models.—According to [8,9]
states for isotropic models in the connection representation
are distributional states of the full kinematical quantum
theory supported on isotropic connections of the form
Ai

a � cL
i
Iv

I
a, where LI is an internal SU�2� dreibein

and vI are the left-invariant one-forms on the “transla-
tional” part of the symmetry group acting on the space
manifold S. The momenta are densitized triads of the
form Ea

i � pL
I
i X

a
I with left-invariant densitized vector

fields XI fulfilling vI �XJ � � d
I
J . Besides gauge freedom,

there are only the two canonically conjugate variables
�c, p� � kg�3 (k � 8pG is the gravitational constant
and g . 0 is the Barbero-Immirzi parameter) which have
the physical meaning of extrinsic curvature and square of
radius (a �

p
jpj is the scale factor). The kinematical
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Hilbert space Hkin � L2���SU�2�, dmH��� is the space
of functions of isotropic connections which are square
integrable with respect to Haar measure. Orthonormal
gauge invariant states are (see [10] for details)

xj �
sin� j 1

1
2 �c

sin c
2

, zj �
cos� j 1

1
2 �c

sin c
2

(1)

for j [ 1
2 �0 together with z2 1

2
� �

p
2 sin c

2 �21. These

states are eigenstates of the volume operator V̂ with eigen-
values [10]

Vj � �gl2
P�

3
2

q
1
27j� j 1

1
2 � � j 1 1� . (2)

Later we also use a different orthonormal basis of states
adapted to the triad by introducing

jn� :�
exp�in c

2 �
p

2 sin c
2

, n [ � , (3)

where n represents the eigenvalues of p which determines
the dreibein. In contrast to j, which is always positive and
represents eigenvalues of the square of the scale factor, n
can also be negative. For this it is important that we have
not only the character functions xj , but also the additional
functions zj . This concludes the discussion of quantum
states.

The inverse scale factor.—Classically, the metric of an
isotropic spatial slice is given by qIJ � a2dIJ � ei

Ie
i
J ,

where ei
I is the cotriad. From this quantity we can build

the expression

mIJ :�
qIJp
detq

�
ei

Ie
i
I

j detej
�

1
a

dIJ

for the inverse scale factor, which we now quantize as a
first application of the previously derived calculus. The
cotriad is not a fundamental variable, but it can be quan-
tized to 2i�gl2

P�21hI �h21
I , V̂ � due to the classical identity

ei
a � 2�kg�21�Ai

a, V � [11]. The expression dete in the
denominator of mIJ can be quantized to the volume op-
erator which then can be absorbed into the commutators.
Such a procedure has already been applied in [14] in or-
der to quantize matter Hamiltonians which become densely
defined operators, and in the same way we arrive at the
bounded operator

m̂IJ �
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P
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This operator is simultaneously diagonalizable with the
volume operator and has the eigenvalues

mIJ,j �
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g2l4
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	 V2 1
3 �dIJ 1

g2

9 � 1
256 1

37
192dIJ� l4

P

a4 � , (5)

where in the second step we have assumed that j— and
hence Vj—is large. Thus, for large j, the leading term

is the classical value V2 1
3 dIJ, and the corrections (which

are not necessarily isotropic) are of only the fourth order.
5228
We see that our quantization leading to a bounded operator
does not spoil the classical limit. In fact, the a21 behav-
ior can be observed in a range which is much larger than
expected from the large-j expansion. As Fig. 1 demon-
strates, even for j � 1 the eigenvalues are very close to the
classical expectation, and only the lowest three eigenval-
ues show large deviations. But this is already deeply in the
quantum regime, so such deviations are expected and lead
to a finite behavior of the classically diverging mII . Note
that the volume operator has the eigenvalue zero (threefold
degenerate), but even in the corresponding eigenstates is
the quantization of the inverse scale factor perfectly finite.
This may be taken as a first indication for the removal of
the classical singularity, although only at the kinematical
level.

Discrete time evolution.—Following the basic steps of
the quantization in the full theory [11], the Hamiltonian
constraints for cosmological models can be quantized with
some adaptations to the symmetry [12]. For simplicity
we write down here only the key term, the so-called Eu-
clidean term H�E�, of the constraint operator for spatially
flat isotropic models. However, all our qualitative results
remain true for the full constraint and also for isotropic
models with positive curvature. The constraint is of the
form

Ĥ�E� �
4i

gkl2
P

X
IJK

eIJK tr�hIhJh21
I h21

J hK �h21
K , V̂ ��

� 2
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2 2 cos c
2 V̂ sin c

2 �

with action

Ĥ�E�jn� � 2
3

gkl2
P
�Vjnj�2 2 Vjnj�221�

3 �jn 1 4� 2 2jn� 1 jn 2 4�� . (6)

In order to “unfreeze dynamics” and interpret solutions
as “evolving states,” as usual [15,16] we have to intro-
duce an internal time which we choose as the dreibein
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FIG. 1. The classical expectation V
2 1

3
j (dashed line) and eigen-

values mII ,j , j $ 0 of the inverse scale factor (3). Contrary to
the classical curve, the latter peak at j � 1

2 and decrease for
j � 0 and j � 2 1

2 (mII,2 1
2

� 0 is not shown).
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coefficient p. Accordingly, we transform states js� into
an adapted representation by expanding js� �

P
n snjn� in

eigenstates jn� of p. This allows us to find an interpreta-
tion of physical states as evolving histories. Furthermore,
discrete geometry implies that eigenvalues of p are dis-
crete, whence time evolution is now discrete (see [13] for
details). Moreover, since we chose a geometrical quantity
as time which can be negative and is zero for vanishing
volume, we are able to test the possibility of a quantum
evolution through the classical singularity.
To realize dynamics, we need to extend the model with
matter degrees of freedom which can evolve with this inter-
nal time. Matter can be incorporated by using coefficients
sn�f� depending on the matter field f in an appropriate
fashion, the details of which are not important for what
follows. The Hamiltonian constraint can then be written
down using a matter Hamiltonian Ĥf (as in [14]) which is
diagonal in the gravitational degrees of freedom (and can
also contain a cosmological term). The resulting quantum
constraint equation can then be regarded as an evolution in
discrete time:
�Vjn14j�2 2 Vjn14j�221�sn14�f� 2 2�Vjnj�2 2 Vjnj�221�sn�f� 1 �Vjn24j�2 2 Vjn24j�221�sn24�f� �
1
3gkl2

PĤfsn�f�
(7)
[Vj are the eigenvalues (2) of the volume operator with
V21 � 0], which is a difference equation for the coeffi-
cients sn�f� depending on the discrete label n (our discrete
time).

Fate of the singularity.— Given initial data sn�f� for
some negative n, we can use (7) in order to determine
later values for higher n. This, however, is possible only as
long as the highest order coefficient Vjn14j�2 2 Vjn14j�221
is nonzero, which is the case if and only if n fi 24. So
all coefficients for n , 24 are determined by the initial
data. However, (7) does not determine s0 and instead
leads to a consistency condition for the initial data. So
the quantum evolution appears to break down just at the
classical singularity, i.e., at the zero eigenvalue of p. But
this is not the case; in fact, all sn for n . 0 are determined
by (7) from the initial data. This occurs because for n � 0
we have (i) Vjnj�2 2 Vjnj�221 � 0 and (ii) Ĥfsn�f� � 0;
thus s0 completely drops out of the iterative evolution.
For example, s4 is determined solely by s24 because the
coefficient of sn vanishes for n � 0. So we can evolve
through the singularity and determine all sn for n fi 0.
(The vanishing of Ĥfs0�f� follows from the quantization
of matter Hamiltonians [14] similarly as described for the
inverse scale factor.)

Of course, in order to determine the complete state we
also have to know s0, but a closer analysis reveals that s0
is fixed from the outset: The Hamiltonian constraint al-
ways has the eigenstate sn � s0dn0 with zero eigenvalue
which is completely degenerate and not of physical inter-
est. All evolving solutions are orthogonal to this state and
have s0 � 0 which already fixes the coefficient s0 left un-
determined by using the evolution equation. We see that
the complete state is determined by initial data for negative
n, and so there is no singularity in isotropic loop quantum
cosmology. The intuitive picture is as follows: Since for
n , 0 the volume eigenvalues V�jnj21��2 decrease with in-
creasing n, there is a contracting branch for negative n
leading to a state of zero volume (in general, s61 fi 0
and the volume vanishes for n � 61 which corresponds
to j � 0) in which the universe bounces off leading to the
expanding branch for positive n which can be seen only in
the classical theory and in standard quantum cosmology.
This conclusion holds true for any kind of matter and cos-
mological constant and is a purely quantum gravitational
effect. In particular, we do not need to introduce matter
violating energy conditions and thereby evade the singu-
larity theorems. However, our result crucially depends on
the factor ordering of the constraint which was chosen as
one of the standard possibilities ordering all triad compo-
nents to the right.

The semiclassical regime.—We have seen that the
classical singularity is removed in loop quantum cos-
mology. But we need more for a viable cosmological
model, namely, we also need the correct behavior in the
semiclassical regime. Classical behavior can be present
for only large volume and small extrinsic curvature, i.e., if
jnj is large, c is small, and the wave function does not vary
strongly between successive times n (otherwise the state
would have access to the Planck scale). In this regime we
can interpolate between the discrete labels n and define
a wave function c�a� :� sn�a�, n�a� :� 6a2�gl2

P with
a ranging over a continuous range (using a �

p
jpj 	

p
g lP

p
jnj�6 for large jnj as interpolation points). The

difference operator D then becomes �Ds�n :� sn11 2

sn21 � 1
6gl2

Pa21dc�da 1 O�l5
P�a5� leading to an

approximate constraint operator Ĥ�E� 	 296�iD�2�2 3

a�4 	 26g2l4
P�2 i

3d�d�a2��2a for large a. This is exactly
what one obtains from the classical constraint H�E� �
26c2

p
jpj in standard quantum cosmology [17] by quan-

tizing 3ĉ � 2igl2
Pd�dp. In our framework, however,

this is only an approximate equation valid for large scale
factors. For this equation one can use WKB techniques in
order to derive the correct classical behavior.

Going to smaller a one has to include more and more
corrections in the expansion of the difference operators and
also of the volume eigenvalues. By doing so one can de-
rive perturbative corrections for an effective Hamiltonian
including higher derivative terms. The closer we come to
the classical singularity, the more corrections we have to
include; and at the singularity we need to know all cor-
rections which, as we know from our nonperturbative so-
lution, have to add up to yield the discrete time behavior.
So in these models higher order terms arise from the non-
locality in discrete time of the fundamental theory. But
5229
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even knowing all perturbative corrections, it would be very
hard to see the correct behavior without knowing the non-
perturbative quantization.

Quantum Euclidean space.— In the simplest case, the
Euclidean constraint for a spatially flat model without mat-
ter, it is possible to find an explicit solution to the con-
straint. The constraint equation is of order 8 with one
consistency condition, so one expects seven independent
solutions. But as above we are interested only in solutions
without a strong dependence on j for large j. Then there
is a unique (up to norm) solution

c�c� �
X
j

2j 1 1
Vj1 1

2
2 Vj2 1

2

xj�c� (8)

in the connection representation. In standard quantum
cosmology the constraint equation is ĉ2

p
j p̂jj�c� � 0

with a solution
p
j p̂jj�c� � d�c� which is not unique.

In order to compare the solutions we quantize a by
âxj � 2i�gl2

P�21�Vj1 1
2

2 Vj2 1
2
�xj leading to âc ~P

j�2j 1 1�xj which, in fact, is the delta function on
the configuration space SU�2�. Therefore, we have a
unique solution which incorporates the characterization of
Euclidean space to have vanishing extrinsic curvature of
its flat spatial slices.

Conclusions.—We have shown in this paper that canoni-
cal quantum gravity is well suited to analyze the behav-
ior close to the classical singularity. For this, it is
important to use only techniques which are applicable
in the full theory. This leads to a discrete structure of
space and time which cannot be seen in standard quantum
cosmology. In our framework, the standard quantum
cosmological description arises only as a limit for large
volume where the discreteness is unimportant. For small
volume, quantum geometry leads to new effects which
are responsible for the removal of the classical singularity.
In contrast to earlier attempts this is not achieved by
introducing matter which violates energy conditions; it
is a pure quantum gravity effect. It also does not avoid
the zero volume state present in the classical singularity
because in general the wave function is not orthogonal to
states with zero volume eigenvalue. Nevertheless, there
is no sign of a singularity because in quantum geometry
it is possible to have vanishing volume but nondiverging
inverse scale factor, which in isotropic models dictates
all curvature blowups. Classically, when evolving back-
wards an isotropic universe (with suitable matter content)
collapses, eventually reaching zero spatial volume and
hence diverging curvature. Einstein’s equations cannot
be extended beyond this point [1], whereas the quantum
5230
evolution equations are valid at and beyond a classical
singularity allowing a unique extension of any solution.

Besides removing the singularity, the fact that an evo-
lution through a state of zero volume is possible without
problems could lead to topology change in quantum grav-
ity. Technically, the removal of the singularity is achieved
by using Thiemann’s strategy [11] of absorbing inverse
powers of V̂ into a Poisson bracket which also lead to
densely defined matter Hamiltonians [14]. So it is the
same mechanism which regularizes ultraviolet divergences
in matter field theories and which removes the classical
cosmological singularity. We have also seen that nonper-
turbative effects are solely responsible for this behavior
and a purely perturbative analysis could not lead to these
conclusions.
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