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Spatiotemporal Communication with Synchronized Optical Chaos
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We propose a model system that allows communication of spatiotemporal information using an optical
chaotic carrier waveform. The system is based on broad-area nonlinear optical ring cavities, which
exhibit spatiotemporal chaos in a wide parameter range. Message recovery is possible through chaotic
synchronization between transmitter and receiver. Numerical simulations demonstrate the feasibility of
the proposed scheme, and the benefit of the parallelism of information transfer with optical wave fronts.
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One of the most appealing applications of chaos is the
possibility of using chaotic signals as broadband carriers
of information, which could lead to a simple implemen-
tation of spread-spectrum communication systems. Many
of the schemes devised so far to that end are based on the
occurrence of synchronization between two chaotic sys-
tems [1]. Following the original implementation of this
approach in electronic circuits [2,3], special attention has
been paid to using optical systems [4], which offer the
possibility of high-speed data transfer in all-optical com-
munication systems [5]. Optical chaotic communication
was recently demonstrated in fiber lasers [6], diode lasers
with external nonlinearity [7], and diode lasers with opti-
cal feedback [8].

In most optical realizations of communications with
chaos, the message to be encoded drives the nonlinear
transmitter, so that the message and carrier become mixed
in a nontrivial way. The resulting output is injected into
a receiver, which, upon synchronization to the transmit-
ter, allows for recovery of the original signal. The opti-
cal schemes developed so far have used purely temporal
chaotic signals as information carriers. This Letter pro-
poses a nonlinear optical device exhibiting spatiotemporal
chaos as the basis of a communication system capable of
transmitting information in space and time. Chaotic be-
havior in spatial degrees of freedom was recently used
for multichannel communication with multimode semi-
conductor lasers [9]. In that case, however, only varia-
tions of the electric field along its propagation direction
were considered. Information was encoded in the different
longitudinal cavity modes, demonstrating a technique for
multiplexing. Spatiotemporal communication, on the other
hand, utilizes the inherent large scale parallelism of in-
formation transfer that is possible with broad-area optical
wave fronts. As in previous cases [10], our scheme re-
quires the existence of synchronization between transmit-
ter and receiver. Synchronization of spatiotemporal chaos
was investigated extensively in previous years, but most
studies were restricted to nonlinear oscillator arrays [11],
coupled map lattices [12], and model partial differential
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equations [13–15]. Our system, on the other hand, is rep-
resented by an infinite-dimensional map spatially coupled
in a continuous way by light diffraction.

The experimental setup is shown schematically in
Fig. 1. Two optical ring cavities are unidirectionally
coupled by a light beam extracted from the left ring (the
transmitter) and partially injected into the right ring (the
receiver). Each cavity contains a broad-area nonlinear
absorbing medium, and is subject to a continuously
injected plane wave Ai . Light diffraction will be taken
into account during propagation through the medium, in
such a way that a nonuniform distribution of light in the
plane transverse to the propagation direction may appear.
In fact, an infinite number of transverse modes will, in
principle, be allowed to oscillate within the cavity. A
spatiotemporal message M can be introduced into the
transmitter’s cavity and recovered as eM in the receiver, as
explained below.

When no message is introduced and the receiver is ab-
sent, the transmitter is a standard nonlinear ring cavity,
well known to exhibit temporal optical chaos [16]. When
transverse effects due to light diffraction are taken into ac-
count, a rich variety of spatiotemporal instabilities appear
[17], giving rise to solitary waves [18], period-doubling
bifurcations [19], spatial patterns [20], and spatiotemporal

FIG. 1. Scheme for communicating spatiotemporal informa-
tion using optical chaos. CM is a coupling mirror.
© 2001 The American Physical Society
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chaos [21,22]. This latter behavior is the one in which we
are interested, since such chaotic waveforms will be used
as information carriers in our setup.

The propagation of light through the nonlinear medium
can be described by the following equation for the slowly
varying complex envelope En� �x, z� of the electric field (as-
sumed to be linearly polarized) in the nth passage through
the resonator [21]:
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The first term on the right-hand side of (1) describes
diffraction, and the second describes saturable absorption.
The propagation direction is denoted by z, whereas �x is a
vector in the plane orthogonal to the propagation direction.
Equation (1) obeys the boundary condition

En� �x, 0� �
p
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which corresponds to the infinite-dimensional map that is
the object of our analysis. z � 0 in (2) denotes the input
of the nonlinear medium, which has length �. The total
length of the cavity is L. Other parameters of the model
are the absorption coefficient a of the medium, the detun-
ing D between the atomic transition and cavity resonance
frequencies, the transmittivity T of the input mirror, and
the total return coefficient R of the cavity (fraction of light
intensity remaining in the cavity after one round-trip). The
injected signal, with amplitude A and wave number k, is
taken to be in resonance with a longitudinal cavity mode.

Previous studies have shown that for D , 0, models (1)
and (2) exhibit irregular dynamics in both space and time
for large enough A [21]. This spatiotemporally chaotic
behavior can become synchronized to that of a second
cavity, also operating in a chaotic regime, coupled to the
first one, as shown in Fig. 1. The coupling mechanism can
be modeled in the following form [10]:
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where the application F �i� represents the action of the map
(2) in every round-trip. The coupling coefficient c is given
by the transmittivity of the coupling mirror (CM) (Fig. 1).
The superindices 1 and 2 represent the transmitter and
receiver, respectively. Earlier studies have shown that local
sensor coupling is enough to achieve synchronization of
spatiotemporal chaos in model continuous equations [23].
In our optical model, however, the whole spatial domain
can be coupled to the receiver in a natural way.

To estimate the synchronization efficiency of scheme
(3), we have evaluated the synchronization error [14]
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size of the system. This quantity was been computed
for increasing values of the coupling coefficient c, by
numerically integrating models (1) and (2) for both the
transmitter and receiver operating in a regime of spa-
tiotemporal chaos, and using the coupling scheme (3).
Simulations were performed in a 1D lattice of 1000 cells
of size dx � 0.1 spatial units, using a pseudospectral
code for the propagation equation (1). Similar parameter
values to those of Ref. [21] are used here. The initially
uncoupled systems evolve in time, starting from arbitrary
initial conditions, and after 100 round-trips, when their
unsynchronized chaotic dynamics is fully developed,
coupling is switched on. The synchronization error en

is measured 100 round-trips later. The results are shown in
Fig. 2(a), which plots the value of en for increasing cou-
pling strengths. According to these results, a high degree
of synchronization can be obtained for couplings as low
as 40%.

Another important issue to address at this point is how
sensitive synchronization is to differences between the two
cavities. We have extensively analyzed the effect of differ-
ent parameter mismatches on the synchronization error en.
Our results indicate that parameters such as the absorption
coefficient a, the detuning D, and the nonlinear medium
length � can be varied as much as 50% and still keep en

below 1022. More sensitive parameters are the total length
L of the cavity [due to its appearance in the phase-change
term of (2)] and the amplitude A of the injected signal.
Since the two cavity lengths can be matched experimen-
tally, we now examine in detail the effect of a mismatch
in A. This parameter could be controlled in real time if
necessary, and hence act as a control parameter for syn-
chronization. The variation of en versus relative mismatch
of A is shown in Fig. 2(b). It can be seen that synchro-
nization is quickly degraded as the two injected amplitudes
differ, with en increasing well above 1022 for mismatches
of the order of 1%. Therefore, the value of A is critical for
obtaining synchronization in the system.

We now use the synchronizing system described above
to encode and decode information in space and time using
the spatiotemporal chaotic carrier. We modify the scheme
of Eqs. (3) according to Fig. 1, which leads to
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FIG. 2. Synchronization error en versus (a) coupling coeffi-
cient and (b) injected-amplitude mismatch. Parameters com-
mon to the two cavities are a � 100.0, D � 210.0, R � 0.9,
T � 0.1, k � 100.0, � � 0.01, and L � 0.015. In (a), the com-
mon value of A is 7.0, which is also the value used for the trans-
mitter in (b).
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FIG. 3. Transmission of 1D
spatiotemporal data. (a) Input
spectrogram, (b) real part of
transmitted signal, and (c) re-
covered data. Parameters are
the same as shown in Fig. 2(a),
plus c � 0.9.
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If synchronization between transmitter and receiver is
achieved, it will be possible to decode the signal by
simply subtracting the transmitted signal and the one in
the receiver: eMn� �x� � E

�1�
n � �x, �� 1 Mn� �x� 2 E

�2�
n � �x, ��.

In the case of no mismatch, it can be seen analytically in
a straightforward way that, as the coupling coefficient c
tends to 1, the difference jE

�1�
n 2 E

�2�
n j ! 0 ; �x, which

corresponds to perfect synchronization, and hence to
perfect message recovery. It should be noted that the
message is not merely added to the chaotic carrier, but
rather the former drives the nonlinear transmitter itself.
Therefore, as we will see in what follows, the amplitude
of the message need not be much smaller than that of the
chaotic signal to provide good masking of the information.

The scheme described above was tested by encoding an
analog 1D signal with complex evolution in space and
time. The sample signal chosen is the spectrogram of
a sample of speech. Chaotic systems were used in the
past to encode speech waveforms [3,10], but the infor-
mation that such signals provide is insufficient for voice-
recognition purposes. Spectrograms, on the other hand,
contain information on a broad range of frequencies as time
evolves. Figure 3(a) shows a gray scale spectrogram of the
word “compute,” with frequency components in the hori-
zontal axis and time evolving from bottom to top. We will
encode the frequency information in the 1D transverse di-
rection of our setup. The real part of the transmitted signal
is shown in Fig. 3(b) for a message amplitude maximum
of 0.5. This value should be compared to the maximum
intensity of the chaotic carrier, which oscillates between
1 and 10, approximately, for the parameters chosen. The
spatiotemporal chaotic state of the signal can be clearly
observed. Finally, Fig. 3(c) shows the detected message,
for a 90% coupling between transmitter and receiver.

Figure 3 qualitatively shows that, even though coupling
between transmitter and receiver is not complete, informa-
tion varying in time and space can be successfully trans-
5206
mitted and recovered with the setup described in Fig. 1.
In order to have a quantitative measure of this effect, we
have estimated the mutual information between input and
output message signals, and its dependence on several sys-
tem parameters. To that end, we discretize the values of
M and eM in space-time points, and compute the proba-
bility distributions p�x�, p� y�, and the joint probability
p�x, y�, where x and y are the different values that M
and eM may take, respectively. A measure of the mu-
tual information between the two sets of data is given by
I � 2

P
x,y p�x, y� ln�p�x�p� y��p�x, y��, where the sums

run over all possible values of M and eM. This mu-
tual information function is 0 for completely independent
data sets, and equal to the entropy of the common sig-
nal, H � 2

P
x p�x� lnp�x�, when the two messages are

identical. Figure 4(a) shows the value of the mutual in-
formation I , for the message encoding proposed in Fig. 3,
versus the coupling coefficient c. It can be seen that, as c
increases, I grows from 0 to perfect recovery, correspond-
ing to the entropy of the input image, given by the horizon-
tal dashed line in the figure. This result shows that, even
though good synchronization appears for c * 0.4, satisfac-
tory message recovery requires coupling coefficients closer
to unity. This can also be seen by examining the behavior
of the entropy H of the recovered image, plotted as empty
squares in Fig. 4(a): for values of c substantially smaller
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FIG. 4. Information measures corresponding to the message
encoding of Fig. 3. Full circles: mutual information I; empty
squares, entropy H of the recovered data; horizontal dashed line,
entropy of the original image. Empty diamonds are the values
of I in the presence of noise (see text). Parameters are the same
as in Fig. 2.
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FIG. 5. Transmission of a 2D spatiotemporal static image.
(a) Input image, (b) real part of the transmitted signal at a cer-
tain time, and (c) recovered data. Parameters are the same as
those in Fig. 2(a), plus c � 0.7.

than 1, the entropy of the recovered data is appreciably
larger than that of the input message, indicating a higher
degree of randomness in the former. Finally, the behavior
of the mutual information in the presence of noise is shown
as empty diamonds in Fig. 4(a). Uncorrelated, uniformly
distributed noise is added continuously to the communica-
tion channel, with an amplitude 1% that of the message.
The results show that the scheme is reasonably robust, in
agreement with previous studies [9]. A more systematic
analysis of this issue is in progress.

We also examined the effect of parameter mismatch on
the efficiency of message recovery. As in the synchroniza-
tion characterization, we concentrated on the influence of
the most sensitive parameter, namely, the amplitude A of
the injected signal. The data plotted in Fig. 4(b) show that
a slight mismatch in the value of A will degrade recovery,
by leading to values of I much smaller that the entropy of
the input message and leading to a recovered message with
substantially larger entropy than the original.

Finally, we should note that our setup is also suitable for
the transmission of two-dimensional information. To illus-
trate this, we have chosen to encode a static 2D image with
the same mechanism discussed above. Figure 5 shows the
results obtained in this case. As in Fig. 3, the left plot de-
picts the input message, the middle plot the real part of
the transmitted signal (a snapshot of it, in this case), and
the right plot the recovered data. The message amplitude
maximum is now 0.01. Simulations are now performed on
a square array with 256 3 256 pixels of width dx � 1.0.
The image is clearly recognizable even though the cou-
pling coefficient is now as low as 0.7.

In conclusion, we have proposed a nonlinear optical
model system that allows encoding and decoding informa-
tion in space and time by means of spatiotemporal chaos
synchronization. Synchronization occurs for a wide range
of coupling values and system parameters. Spatiotempo-
ral information can be successfully recovered for large
enough coupling between the transmitter and receiver,
and for small enough parameter mismatches. An infinite-
dimensional map is required in this case for spatiotem-
poral communication with light wave fronts; this could
also be advantageous towards providing a higher level
of privacy for the information [24]. The proposed setup
could be experimentally implemented upon identification
of a suitable broad-area nonlinear medium.
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