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Separable States Are More Disordered Globally than Locally
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A remarkable feature of quantum entanglement is that an entangled state of two parties, Alice (A)
and Bob (B), may be more disordered locally than globally. That is, S�A� . S�A, B�, where S�?� is the
von Neumann entropy. It is known that satisfaction of this inequality implies that a state is nonseparable.
In this paper we prove the stronger result that for separable states the vector of eigenvalues of the density
matrix of system AB is majorized by the vector of eigenvalues of the density matrix of system A alone.
This gives a strong sense in which a separable state is more disordered globally than locally and a new
necessary condition for separability of bipartite states in arbitrary dimensions.
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Quantum mechanics harbors a rich structure whose
investigation and explication are the goal of quantum
information science [1,2]. At present only a limited
understanding of the fundamental static and dynamic
properties of quantum information has been obtained, and
many major problems remain open. In particular, we want
a detailed ontology and quantitative methods of descrip-
tion for the different types of information and dynamical
processes afforded by quantum mechanics. An example of
the pursuit of these goals has been the partial development
of a theory of quantum entanglement; see, e.g., [3–7] and
references therein.

The separability or nonseparability of a quantum state
is an issue that has received much attention in the de-
velopment of a theory of entanglement. The notion of
separability captures the idea that a quantum state’s static
properties can be explained entirely by classical statistics
and is sometimes claimed to be equivalent to the notion
that a state is “not entangled.” More precisely, a state rAB

of Alice and Bob’s system is separable [8] if it can be writ-
ten in the form rAB �

P
j qjrj ≠ sj , for some probability

distribution �qj�, and density matrices rj and sj of Alice
and Bob’s systems, respectively. Thus, we can think of
Alice and Bob’s systems as having a local, pseudoclassi-
cal description, as a mixture of the product states rj ≠ sj

with probabilities qj . Note that separability is equivalent
to the condition

rAB �
X
j

pjjcj� �cjj ≠ jfj� �fjj , (1)

where �pj� is a probability distribution and jcj�, jfj� are
pure states of Alice and Bob’s systems, respectively.

One reason for interest in separability is a deep theorem
due to M., P., and R. Horodecki connecting separability
to positive maps on operators [5]. The Horodeckis used
this theorem to prove that the “positive partial transpose”
criterion for separability introduced by Peres [9] is a nec-
essary and sufficient condition for separability of a state
rAB of a system consisting of a qubit in Alice’s posses-
sion and either a qubit or qutrit in Bob’s possession. More
0031-9007�01�86(22)�5184(4)$15.00
precisely, if we define r
TB
AB to be the operator that results

when the transposition map is applied to system B alone,
then the Horodeckis showed that rAB is separable if and
only if r

TB
AB is a positive operator. Unfortunately, this cri-

terion, while necessary for a state to be separable in higher
dimensions [9], is not sufficient.

A hallmark of quantum entanglement is the remarkable
fact that individual components of an entangled system
may exhibit more disorder than the system as a whole.
The canonical example of this phenomenon is a pair
of qubits A and B prepared in the maximally entangled
state �j00� 1 j11���

p
2. The von Neumann entropy

S�A� of qubit A is equal to one bit, compared with a
von Neumann entropy S�A, B� of zero bits for the joint sys-
tem. Classically, of course, such behavior is impossible,
and the Shannon entropy H�X� of a single random
variable is never larger than the Shannon entropy of two
random variables, H�X�, H�Y � # H�X, Y �. It has been
shown [10] (see Chap. 8 of [11] and [12–14] for related
results, including generalizations to the a entropy, and
the reduction criterion for separability) that an analogous
relation holds for separable states,

S�A�, S�B� # S�A, B� . (2)

This result is a consequence of the concavity of S�A, B� 2

S�A� [1,15], since when rAB �
P

j qjrj ≠ sj we have
S�A, B� 2 S�A� $

P
j qj�S�rj ≠ sj� 2 S�rj�	 $ 0. Un-

fortunately, the inequalities (2) are insufficient to char-
acterize separability. To see this, consider the Werner
state of two qubits rp � pjC� �Cj 1 �1 2 p�I�4 (0 #

p # 1) and jC� � �j00� 1 j11���
p

2. The positive par-
tial transpose criterion implies that the state is separable if
and only if p # 1�3. The marginal density matrices be-
ing fully mixed for all p, however, one obtains S�A� �
S�B� � 1 # S�A, B� � H� 113p

4 , 12p
4 , 12p

4 , 12p
4 � for 0 #

p # 0.747 . . . , so the condition (2) is fulfilled for a range
of inseparable states.

The notion of von Neumann entropy is a valuable no-
tion of disorder in a quantum state; however, more so-
phisticated tools for quantifying disorder exist. One such
© 2001 The American Physical Society
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tool is the theory of majorization, whose basic elements
we now review (see Chap. 2 and 3 of [16], [17], or [18]
for more extensive background). Suppose x � �x1, . . . , xd�
and y � � y1, . . . , yd� are two d-dimensional real vectors;
we usually suppose in addition that x and y are probability
distributions; that is, the components are non-negative and
sum to one. The relation x ¡ y, read “x is majorized by
y,” is intended to capture the notion that x is more “mixed”
(i.e., disordered) than y. Introduce the notation # to de-
note the components of a vector rearranged into decreasing
order, so x# � �x#

1, . . . , x
#
d�, where x

#
1 $ x

#
2 $ · · · $ x

#
d .

Then we define x ¡ y, if
kX

j�1

x
#
j #

kX
j�1

y
#
j , (3)

for k � 1, . . . , d 2 1, and with the inequality holding
with equality when k � d. To understand how this
definition connects with disorder consider the follow-
ing result (see Chap. 2 of [16] for a proof): x ¡ y
if and only x � Dy, where D is a doubly stochastic
matrix. Thus, when x ¡ y we can imagine that y is the
input probability distribution to a noisy channel described
by the doubly stochastic matrix D, inducing a more
disordered output probability distribution, x. Majorization
can also be shown [16] to be a more stringent notion of
disorder than entropy in the sense that if x ¡ y then it
follows that H�x� $ H� y�.

Given the known connections between measures of
disorder such as the von Neumann entropy and sepa-
rability, it is natural to conjecture that there might be
some relationship between separability and the vectors
l�rAB�, l�rA�, l�rB� of eigenvalues for rAB and the corre-
sponding reduced density matrices. Majorization suggests
the following theorem as a natural way of strengthening
the necessary conditions for separability, Eq. (2).

Theorem 1 (disorder criterion for separability).—If
rAB is separable, then

l�rAB� ¡ l�rA� and l�rAB� ¡ l�rB� . (4)

[By convention we append zeros to the vectors l�rA� and
l�rB� so they have the same dimension as l�rAB�.]

The disorder criterion for separability, Theorem 1, is the
main result of this paper. Note that it provides a more
stringent criterion for separability than (2), since for any
two states r and s, l�r� ¡ l�s� implies that S�r� $

S�s�, but not necessarily conversely.
Proof.— If rAB is separable, it may be written in the

form of (1). Let rAB �
P

k rkjek� �ekj be a spectral de-
composition for rAB. By the classification theorem for
ensembles (Theorem 2.6 in [1]) it follows that there is a
unitary matrix ukj such that

p
rk jek� �

X
j

ukj
p

pj jcj� jfj� . (5)

Next we trace out system B in (1) to give rA �P
j pjjcj� �cjj. Letting rA �

P
l aljfl� � fl j be a spectral
decomposition and applying the classification theorem
for ensembles we see that there is a unitary matrix yjl

such that
p

pj jcj� �
P

l yjl
p

al jfl�. Substituting into (5)
gives

p
rk jek� �

P
jl
p

al ukjyjlj fl� jfj�. Multiplying
this equation by its adjoint and using the orthonormality
of the vectors j fl� we obtain

rk �
X

l

Dklal , (6)

where

Dkl 

X
j1j2

u�
kj1

ukj2y
�
j1lyj2l�fj1 jfj2� . (7)

To complete the proof all we need to do is show that
Dkl is doubly stochastic. The fact that Dkl $ 0 follows
by defining jgkl� 


P
j ukjyjljfj� and noting that Dkl �

�gkl jgkl� $ 0. From (7) and by the unitarity of u we have
X
k

Dkl �
X
j1j2

dj1j2y
�
j1lyj2l�fj1 jfj2� �

X
j

y�
jlyjl � 1 .

Similarly,
P

l Dkl � 1, and thus D is a doubly stochastic
matrix. �

The disorder criterion for separability Eq. (4) is strictly
stronger than the entropic criterion (2). Indeed, for Bell-
diagonal states of two qubits, it follows from the posi-
tive partial transpose criterion and a straightforward
calculation that condition (4) is equivalent to separa-
bility, whereas as remarked earlier the condition S�A�,
S�B� # S�A, B� is not sufficient to characterize separa-
bility even for the more restricted case of Werner states.
More generally, the disorder criterion (4) completely
characterizes the separability properties of Werner states
in arbitrary (d) dimensions. More precisely, states of
the form rp � pjC� �Cj 1 �1 2 p��d2I, where jC� �
�j00� 1 j11� 1 · · · 1 j�d 2 1� �d 2 1����

p
d are known

to be separable if and only if p # 1��d 1 1� [19]. The
marginal density matrices of these states are completely
mixed and Eq. (4) thus becomes

1
d2 �1 1 �d2 2 1�p, 1 2 p, . . . , 1 2 p	 ¡

1
d

�1, . . . , 1� ,

(8)

which is easily seen to be equivalent to p # 1��d 1 1�.
Another interesting application of the disorder criterion

Eq. (4) is to the problem of finding nonseparable states
near the completely mixed state I≠n�dn of n qudits (d-
dimensional quantum systems). Consider the state r 

�1 2 e�I≠n�dn 1 ejc� �cj, where jc� is the cat state of
n qudits. Partitioning the n qudits so that the first n 2 1
belong to Alice and the final qudit to Bob, a straightfor-
ward calculation shows that the disorder criterion is vio-
lated whenever e . 1��1 1 dn21�, and thus r must be
inseparable when e satisfies this condition. Note that this
result has previously been obtained by other techniques
[20,21] (see also [22–25]); however, the utility of the dis-
order criterion is demonstrated in this application by the
5185
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ease with which it is applied and its generality, as com-
pared to the more complex and state-specific arguments
used previously to study the separability of r.

It is natural to conjecture the converse to Theorem 1,
that if both the conditions in Eq. (4) hold, then rAB is
separable. Unfortunately, this is not the case, as the fol-
lowing two qubit examples show.

Example 1.—Let r
p
AB 
 pj00� �00j 1 �1 2 p� jF� 3

�Fj with the Bell state jF� � �j01� 1 j10���
p

2. Then
the partial transpose criterion implies that this state is non-
separable whenever p fi 1. However, l�rp

AB� � �p, 1 2

p� ¡ l�rp
A,B� � ��1 1 p��2, �1 2 p��2	 for 1�3 #

p; that is, criterion (4) is fulfilled for this non-
separable state.

More generally, we now show that attempts to charac-
terize separability based only upon the eigenvalue spectra
l�rAB�, l�rA�, and l�rB� can never work. We demon-
strate this by exhibiting a pair of two qubit states rAB and
sAB such that all these vectors of eigenvalues are the same
(i.e., the states are globally and locally isospectral), yet
rAB is not separable, while sAB is.

Isospectral example.

rAB �
1
3

2
664

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

3
775 ;

sAB �

2
6664

1
3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

3

3
7775 .

(9)

The isospectrality of the these states may be checked by
direct calculation, and the fact that rAB is nonseparable
while sAB is follows from the partial transpose criterion.
(Other examples of this phenomenon have been found by
other researchers, including Davis [26] and Wootters [27].)
It is worth emphasizing how remarkable such examples
are: these density matrices have the same spectra, both
globally and locally, yet one is separable, while the other
is not. This runs counter to the often-encountered wisdom
that a complete understanding of a quantum system can
be obtained by studying the local and global properties
of the spectra of that system. This is the point of view
apparently adopted, for instance, in the theory of quantum
phase transitions [28], perhaps leading to the disregard of
important physical effects in that theory.

Given the isospectral example it is natural to ask under
what conditions a separable state exists, given specified
global and local spectra. We can report the following result
in this direction.

Theorem 2.— If rAB is a density matrix such that
l�rAB� ¡ l�rA�, then there exists a separable density ma-
trix sAB such that l�sAB� � l�rAB� and l�sA� � l�rA�.

Proof.—Suppose �rj� � l�rAB� and �sk� � l�rA�. By
Horn’s lemma [29,30], there is a unitary matrix ujk such
that sj �

P
k jujk j

2rk . Introduce orthonormal bases j j�
5186
for system B and jk� for system A, and for each nonzero
rj define

jcj� 

P

k ujk
p

sk jk�
p

rj
. (10)

Then define s 

P

j rjjcj� �cjj ≠ j j� � jj. Note that s

is manifestly separable with spectrum l�rAB�, while a
simple calculation shows that trB�s� �

P
k skjk� �kj, and

thus l�sA� � l�rA�, completing the proof. �
A stronger conjecture is that whenever both l�rAB� ¡

l�rA� and l�rB�, then there exists a separable state sAB

which is isospectral to rAB. Unfortunately, the following
theorem shows that this is not true.

Theorem 3.—For the class of states r
p
AB in Example 1

(which are nonseparable when 1 . p . 1�3) the disorder
criterion (4) is fulfilled yet there is no separable sAB (glob-
ally and locally) isospectral to r

p
AB when 1 . p $ 1�2.

Proof.—Suppose s 
 sAB is a separable state isospec-
tral to r

p
AB. Then s � pjs1� �s1j 1 �1 2 p� js2� �s2j

for orthonormal states js1� and js2�. We suppose for
now that s can be given a separable decomposition
with only two terms, s � qja1� �a1j ≠ jb1� �b1j 1

�1 2 q� ja2� �a2j ≠ jb2� �b2j. We show later that this is
the only case that need be considered. Define angles
a, b, and f by j�a1 j b1�j 
 cos�a�; j�a2 jb2�j 

cos�b�; cos�f� 
 cos�a� cos�b�. Then the global and
local spectra for s are easily calculated,

l�sAB� �

µ
1 6

p
1 2 4q�1 2 q� sin2�f�

2

∂
, (11)

with similar expressions for l�sA� and l�sB�, with a

and b appearing in place of f. Assuming 1�2 # p
this gives sin2�a� � sin2�b� � �1 2 p2��4q�1 2 q� and
p�1 2 p� � q�1 2 q� sin2�f�. Using sin2�f� � 1 2

�1 2 sin2�a�	 �1 2 sin2�b�	 to substitute the former
expression into the latter, we find q�1 2 q� � �1 1 p�2�
8. For p .

p
2 2 1 � 0.41 there is no q in the range 0

to 1 satisfying this equation, so we deduce that no such
separable state s can exist.

To complete the proof we show that any separable
decomposition s �

P
j qjjaj� �ajj ≠ jbj� �bjj can be

assumed to have two terms (cf. Lockhart [31]). Without
loss of generality we assume that there is no redundancy
in the decomposition; that is, there do not exist values
j fi k such that jaj� jbj� � jak� jbk� (up to phase). We
show that assuming the decomposition has three or more
terms leads to a contradiction. Note that the decom-
position must contain contributions from at least two
linearly independent states, say ja1� jb1� and ja2� jb2�.
Furthermore, because rank�s� � 2 any other state in
the sum must be a linear combination of these two
states, jaj� jbj� � ajja1� jb1� 1 bjja2� jb2�. By the no-
redundancy assumption neither jajj � 1 nor jbjj � 1, so
we must have 0 , jajj, jbjj , 1. Consider now three
possible cases. In the first case, ja1� � ja2� (up to phase),
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in which case jaj� � ja1� (up to phase) for all j, and thus
l�sA� � �1, 0� fi l�rp

A �, a contradiction. A similar con-
tradiction arises when jb1� � jb2� up to phase. The third
and final case is when neither ja1� � ja2� nor jb1� � jb2�
up to phase. In this case ajja1� jb1� 1 bjja2� jb2� cannot
be a product state, a contradiction. �

Given that attempts to characterize separability based on
the local and global spectra are doomed to failure, it is still
interesting to ask whether the conditions l�rAB� ¡ l�rA�
and l�rAB� ¡ l�rB� are equivalent to some other inter-
esting physical condition. We have tried to find such an
equivalence, with little success, but can identify several
plausible possibilities which these conditions are not
equivalent to. They are not equivalent to the property of
violating a Bell inequality, of having a positive partial
transpose, or of being distillable. Another interesting idea
is to find states which have positive partial transposition
but which violate the disorder criterion. Such a state
will necessarily be bound entangled [32]. We have not
yet identified any such states, despite searching through
several of the known classes of bound-entangled states
and doing numerical searches.

In summary, we have connected two central notions in
the theory of entanglement, using majorization to obtain a
simple set of necessary conditions for a state to be sepa-
rable in arbitrary dimensions. Understanding the physical
import of these conditions and their relationship to criteria
such as the positive partial transpose condition remains an
interesting problem for further research.
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