
VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001

5168
Magnetic Spin Ladder ���C5H12N���2CuBr4: High-Field Magnetization
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The magnetization, M�H # 30 T, 0.7 # T # 300 K�, of �C5H12N�2CuBr4 has been used to identify
this system as an S � 1�2 Heisenberg two-leg ladder in the strong-coupling limit, J� � 13.3 K and
Jk � 3.8 K, with Hc1 � 6.6 T and Hc2 � 14.6 T. An inflection point in M�H, T � 0.7 K� at half
saturation, Ms�2, is described by an effective XXZ chain. The data exhibit universal scaling behavior in
the vicinity of Hc1 and Hc2, indicating that the system is near a quantum critical point.
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Magnetic spin ladders are a class of low dimensional
materials with structural and physical properties between
those of 1D chains and 2D planes. In a spin ladder, the
vertices possess unpaired spins that interact along the legs
via Jk and along the rungs via J�, but are isolated from
equivalent sites on adjacent ladders, i.e., interladder J 0 ø
Jk, J�. Recently, a considerable amount of attention has
been given to the theoretical and experimental investigation
of spin ladder systems as a result of the observation that the
microscopic mechanisms in these systems may be related
to the ones governing high temperature superconductivity
[1,2]. The phase diagram of the antiferromagnetic spin
ladder in the presence of a magnetic field is particularly
interesting. At T � 0 with no external applied field, the
ground state is a gapped, disordered quantum spin liquid.
At a field Hc1, there is a transition to a gapless Luttinger
liquid phase, with a further transition at Hc2 to a fully
polarized state. Both Hc1 and Hc2 are quantum critical
points [2]. Near these points, the magnetization has been
predicted to obey a universal scaling function [3], but until
now, this behavior has not been observed experimentally.

A number of solid-state materials have been proposed
as examples of spin ladder systems, and an extensive set of
experiments have been performed on Cu2�C5H12N2�2Cl4,
referred to as Cu(Hp)Cl [4]. The initial work identified
this material as a two-leg S � 1�2 spin ladder [4–12].
Although quantum critical behavior has been preliminar-
ily identified in this system near Hc1, this assertion is
based on the use of scaling parameters identified from
the experimental data rather than the ones predicted
theoretically [11,12]. Furthermore, more recent work
0031-9007�01�86(22)�5168(4)$15.00
has debated the appropriate classification of the low
temperature properties [13–19]. Clearly, additional
physical systems are necessary to experimentally test the
predictions of the various theoretical treatments of two-leg
S � 1�2 spin ladders.

Herein, we report evidence that identifies bis(piperi-
dinium)tetrabromocuprate(II), �C5H12N�2CuBr4 [20],
hereafter referred to as BPCB, as a two-leg S � 1�2
ladder that exists in the strong-coupling limit, J��Jk . 1.
High-field, low-temperature magnetization, M�H # 30 T,
T $ 0.7 K�, data of single crystals and powder samples
have been fit to obtain J� � 13.3 K, Jk � 3.8 K, and
D � 9.5 K, i.e., at the lowest temperatures finite magneti-
zation appears at Hc1 � 6.6 T and saturation is achieved
at Hc2 � 14.6 T. An unambiguous inflection point in
the magnetization, M�H, T � 0.7 K�, and its derivative,
dM�dH, is observed at half the saturation magnetization,
Ms�2. This feature is symmetric about Ms�2, consistent
with expectations for a simple spin ladder. Any presence
of asymmetry, as was observed in Cu(Hp)Cl [5–8], most
likely arises from other factors. Our Ms�2 feature cannot
be explained by the presence of additional exchange
interactions, e.g., diagonal frustration JF , but is well
described by an effective XXZ chain, onto which the
original spin ladder model (for strong coupling) can be
mapped in the gapless regime Hc1 , H , Hc2 [21].
After determining Hc1 and with no additional adjustable
parameters, the magnetization data are observed to obey
a universal scaling function [3]. This observation sup-
ports our identification of BPCB as a two-leg S � 1�2
Heisenberg spin ladder with J 0 ø Jk.
© 2001 The American Physical Society
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The crystal structure of BPCB has been determined to be
monoclinic with stacked pairs of S � 1�2 Cu21ions form-
ing magnetic dimer units [20]. The CuBr22

4 tetrahedra are
cocrystallized along with the organic piperidinium cations
so that the crystal structure resembles a two-leg ladder,
Fig. 1. The rungs of the ladder are formed along the c�

axis (19.8± above the c axis and 123.4± away from the a-c
plane [20]) by adjacent flattened CuBr22

4 tetrahedra related
by a center of inversion. The ladder extends along the a
axis with 6.934 Å between Cu21 spins on the same rung
and 8.597 Å between rungs. The magnetic exchange, J�,
between the Cu21 spins on the same rung is mediated by
the orbital overlap of Br ions on adjacent Cu sites. The
exchange along the legs of the ladder, Jk, is also medi-
ated by somewhat longer nonbonding (Br · · · Br) contacts
and possibly augmented by hydrogen bonds to the organic
cations. A frustrating diagonal exchange, JF , is possible,
although it should be weak �JF ø Jk�, and so the potential
of a finite JF on the short diagonal was considered in our
analysis.

Shiny, black crystals of BPCB were prepared by slow
evaporation of solvent from a methanol solution of
[(pipdH)Br] and CuBr2, and milling of the smallest
crystals was used to produce the powder samples. The
stochiometry was verified using CHN analysis, and 9 GHz
ESR measurements were completely consistent with the
previously reported data, i.e., g�powder� � 2.13 [20]. In
addition, deuterated specimens were produced and used in
neutron scattering studies performed at the HFIR at Oak
Ridge National Laboratory. No evidence for long-range
magnetic order or structural transitions was observed
down to 11 K by powder diffraction and 1.5 K for single
crystal diffraction in the �h 0 1� scattering plane. The low-
field magnetic measurements were performed using a
SQUID magnetometer. The high-field work was conducted

FIG. 1. Schematic of the crystal structure of BPCB. The legs
(rungs) are along the a axis (c� axis); see text.
at the NHMFL using a 30 T, 33 mm bore resistive magnet
and a vibrating (82 Hz) sample magnetometer equipped
with a Cernox thermometer [22].

The low-field, 0.1 T, magnetic susceptibility, x , of a
powder sample, 166.7 mg, is shown as a function of tem-
perature in Fig. 2. The data from single crystals, with the
magnetic field oriented along the a, b, and c axes in sepa-
rate measurements, are indistinguishable from the results
obtained with the powder specimen. The general shape of
the curve is typical of low-dimensional magnetic systems,
and more specifically, it possesses a rounded peak at
�8 K and an exponential temperature dependence below
the peak. Consistent with the neutron scattering results,
no evidence of long-range ordering was observed down to
2 K. A small extrinsic Curie-like impurity contribution
(�1.5% of the total number of Cu spins) and a
temperature-independent diamagnetic term (xdia �
22.84 3 1024 emu�mol, which is the sum of the core
diamagnetism, estimated from Pascal’s constants to be
22.64 3 1024 emu�mol, and the background contribu-
tion of the sample holder) were subtracted from the data
in Fig. 2. The Curie-Weiss temperature u, and the Curie
constant C, can be extracted from a fit �x�T � � xdia 1

C��T 1 u�, 50 K , T , 300 K�, and we find C �
0.433 6 0.002 emu K�mol and u � 5.3 6 0.1 K [23].
These values are close to C � 0.425 emu K�mol �S �
1�2, g � 2.13� and u � �J� 1 2Jk��4 � 5.2 K [24].

Initially, using exact diagonalization methods with
12 spins, the x�T � data were fit to obtain the values
J� � 13.3 K, Jk � 3.8 K for a ladder Hamiltonian and
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FIG. 2. The x�T� of a powder sample (166.7 mg) in 0.1 T.
The line is the result of an exact diagonalization of a ladder
Hamiltonian with 12 spins when J� � 13.3 K and Jk � 3.8 K;
see text. The inset shows the M�H, T � 1 K� expectations of an
exact diagonalization of the alternating chain and ladder Hamil-
tonians with the exchange values given in the text.
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J1 � 13.7 K, J2 � 5.3 K for an alternating chain Hamil-
tonian. Both fits are indistinguishable from the solid line
shown in Fig. 2. Therefore, using only the low-field x�T �
data, we were unable to distinguish between the ladder
and alternating chain models, and this situation was not
improved by fitting the M�H # 5 T, T � 2 K� data.
However, in extensions up to the saturation magnetization,
Ms, the alternating chain model generated M�H, T , Jk�
curves that were asymmetric about Ms�2, as reported
for Cu(Hp)Cl [8,23], and the spin ladder description
predicted symmetric behavior; see Fig. 2 inset. Since our
experimental resolution was estimated to be sufficient to
allow us to differentiate between the two models, the high
magnetic field studies were initiated.

The high-field, H # 30 T, magnetization of a powder
sample, 208.2 mg, is shown in Fig. 3. Since Ms was
reached in our studies, we were able to directly mea-
sure and subtract a small, temperature-independent con-
tribution �xdia � 22.84 3 1024 emu�mole�, which is the
same value obtained in our low-field work. Measure-
ments were also made on a single crystal, 18.9 mg, with
H k a-axis and for T $ 1.6 K. Within the resolution, the
data are the same for the powder and single crystal samples.
Furthermore, the data were acquired while ramping the
field in both directions, and no hysteresis was observed.

The low energy states of the spin ladder Hamiltonian can
be mapped, in the strong-coupling limit, onto the S � 1�2
XXZ chain [21], allowing M�H, T � to be modeled. The
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FIG. 3. The normalized magnetization, M�Ms, of a powder
sample (208.2 mg). The data traces are limited to �150 (of
�3000) points for clarity. The lines are spin ladder predictions
of an effective XXZ chain when J� � 13.3 K and Jk � 3.8 K.
At T � 0.7 K, the inflection point at Ms�2 is clearly visible,
and the inset shows the derivative of this data. The dashed line
is the alternating chain model prediction for 0.7 K when J1, J2
are taken to be the values obtained from fitting the data in Fig. 2;
see text.
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solid lines in Fig. 3 were obtained by numerical integra-
tion of the Bethe ansatz equations for the effective XXZ
chain [25], using the parameters describing the spin lad-
der fit for x�T �. All of the data, Figs. 2 and 3, are repro-
duced by one set of exchange values when using the ladder
model. On the other hand, the alternating chain model fails
to fit all of the data with a single set of parameters. For ex-
ample, the dashed line in Fig. 3 is M�Ms�H, T � 0.7 K�
calculated from the alternating chain mapping onto the
XXZ chain when J1 � 13.7 K and J2 � 5.3 K, i.e., the
values obtain from fitting x�T �, Fig. 2, by an alternating
chain model. In addition, our data were analyzed with
a ladder model that also incorporated a frustrating inter-
action, JF [26], and we can estimate an upper bound of
JF , 0.5 K. Consequently, all of the data are consis-
tent with a strongly coupled ladder description for BPCB,
where J� � 13.3 6 0.2 K, and Jk � 3.8 6 0.1 K.

To leading order, gmBHc1 � J� 2 Jk, and gmBHc2 �
J� 1 2Jk [26,27]. Using the previously mentioned pa-
rameters, we obtain Hc1 � 6.6 T and Hc2 � 14.6 T, iden-
tical with the experimental results. The inset in Fig. 3
shows the derivative curve, d�M�Ms��dH, of our data
at the lowest temperature. The symmetric double bump
structure and its evolution with temperature has been stud-
ied theoretically [17] but has not been observed previously
in S � 1�2 two-leg ladder materials. Even though our
theoretical curve somewhat overestimates the sharpness of
d�M�Ms��dH, the overall agreement between theory and
experiment, including the evolution of M�H, T �, Fig. 3, is
excellent, and involves no adjustable parameters once Hc1
is defined. Furthermore, the fact that we see only one fea-
ture at Ms�2 between Hc1 and Hc2 is evidence that our
strongly interacting dimers are not coupling to form 2D
[28] or 3D [29,30] networks.

At Hc1, BPCB undergoes a transition from gapped dimer
pairs to a gapless Luttinger liquid phase with fermionic
excitations, where the magnetization is proportional to the
fermion density [3,31,32]. This transition can be described
as a condensation of a dilute gas of bosons (dimers), and
quasiparticle interactions are irrelevant at the transition
point. At Hc2, an analogous situation exists where the tran-
sition is between the Luttinger liquid and spin polarized
phases. When T , gmBjH 2 Hc1j, and gmBjHc2 2 Hj
are &Jk, the 1D magnetization is predicted to obey the
universal scaling law (assuming J��Jk ¿ 1) that may be
written as

M�H, T �
Ms

�
q

2kBT�JkM �gmB�H 2 Hc1��kBT� ,

1 2
M�H, T �

Ms
�

q
2kBT�JkM �gmB�Hc2 2 H��kBT� ,

where the universal function M is the fermion density [3].
This theoretically predicted scaling behavior is compared
to the data in Fig. 4, where the agreement is impressive.
It is important to stress that the scaling shown in Fig. 4
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FIG. 4. The scaled data in the vicinity of Hc1 and Hc2. The
solid lines are the predictions of the theory when Hc1 is fixed.
The inset shows the T1�2 scaling behavior at Hc1.

has been theoretically predicted [3] and is not a result
of extracting scaling variables on the basis of the data
[12]. In an isolated spin ladder, scaling is expected at the
lowest temperatures, T & Jk. A deviation from scaling is
observed for T � 0.7 K, which suggests that other weak
interactions, such as JF or J 0, may begin to have a subtle
influence, while the data up to 4.47 K appear to obey the
scaling theory. The T1�2 scaling of the magnetization at
the critical point H � Hc1, Fig. 4, is further evidence that
BPCB is a two-leg spin ladder with J 0 ø Jk [33].

In summary, analysis of M�H # 30 T, T $ 0.7 K� has
allowed us to identify BPCB as a two-leg S � 1�2 spin
ladder in the strong-coupling limit, J��Jk � 3.5. A single
set of exchange constants, J� � 13.3 K and Jk � 3.8 K,
are able to accurately describe all of the data. The M�H �
Hc1 or Hc2, 1 K , T , 4.5 K� data exhibit scaling be-
havior in the universality class of the 1D dilute Bose gas
transition [2,3]. Although we have considered the poten-
tial existence of additional exchange interactions JF and
J 0, effects arising from these parameters are not prominent
in the present data. However, since subtle differences arise
between the theoretical predictions and the data at the low-
est temperature, additional perturbing interactions may be
present.
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