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Let fN and j
21
N represent, respectively, the free energy per spin and the inverse spin-spin correlation

length of the critical Ising model on a N 3 ` lattice, with fN ! f` as N ! `. We obtain analytic ex-
pressions for ak and bk in the expansions N� fN 2 f`� �

P`
k�1 ak�N2k21 and j

21
N �

P`
k�1 bk�N2k21 for

square, honeycomb, and plane-triangular lattices, and find that bk�ak � �22k 2 1���22k21 2 1� for all of
these lattices, i.e., the amplitude ratio bk�ak is universal. We also obtain similar results for a critical quan-
tum spin chain and find that such results could be understood from a perturbated conformal field theory.
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Experimental data, analytical and simulational studies of
phase transition models, and renormalization group (RG)
theory suggest that critical systems can be grouped into
universality classes so that the systems in the same class
have the same set of critical exponents [1–3]. RG theory
was also used to propose that critical systems of the same
universality class could have universal finite-size scaling
functions (UFSSF’s) and universal amplitude ratios [2–4],
and some analytical and numerical calculations of critical
systems have supported the idea of universal amplitude ra-
tios [2–4]. By using Monte Carlo methods [5] and choos-
ing appropriate aspect ratios for lattices of critical systems,
Hu et al. found UFSSF’s for percolation and Ising models
[6]. Despite the success of RG theory and Monte Carlo
simulations, it is valuable to have more analytical results
which could widen or deepen our understanding of the uni-
versality of critical systems. In this Letter we present exact
calculations for a set of universal amplitude ratios for the
Ising model on square (sq), honeycomb (hc), and plane-
triangular (pt) lattices [7–9] and for a quantum spin chain
[10], which is in the universality class of two-dimensional
(2D) Ising models. As far as we know, no previous RG ar-
guments, analytical calculations, or numerical studies pre-
dict the existence of this whole set of universal amplitude
ratios.

Let fN and j
21
N represent, respectively, the free energy

per spin and the inverse spin-spin correlation length of
the Ising model [7–9] on an N 3 ` lattice with periodic
boundary conditions, with fN ! f` as N ! `. In this
Letter, we obtain analytic equations for ak and bk in the
expansions,

N� fN 2 f`� �
X̀
k�1

ak

N2k21 , (1)

j21
N �

X̀
k�1

bk

N2k21 , (2)

for sq, hc, and pt lattices, and find that

bk�ak � �22k 2 1���22k21 2 1� , (3)
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for all of these lattices, i.e., the amplitude ratio ak�bk is
universal. We also obtain similar expansions for the criti-
cal ground state energy E0 and the critical first energy gap
�E1 2 E0� of a quantum spin chain [10], which are, respec-
tively, the quantum analogies of the free energy and inverse
spin-spin correlation length for the Ising model, and find
that the amplitude ratios have the same values. We could
physically understand such results from a perturbated con-
formal field theory.

Consider an Ising ferromagnet on an N 3 M lattice with
periodic boundary conditions (i.e., a torus). The Hamilto-
nian of the system is

bH � 2J
X
�ij�

sisj , (4)

where b � �kBT �21, the Ising spins si � 61 are located
at the sites of the lattice, and the summation goes over all
nearest-neighbor pairs of the lattice. We consider a transfer
matrix acting along the M direction [11–13]. If L0 and
L1 are the largest and the second-largest eigenvalues of
the transfer matrix, in the limit M ! ` the free energy per
spin, fN , and the inverse longitudinal spin-spin correlation
length, j

21
N , are

fN �
1

zN
lnL0 and j21

N �
1
z

ln�L0�L1� . (5)

Here z is a geometric factor which is 1, 2�
p

3, and 1�
p

3
for sq, hc, and pt lattices, respectively [2]. Exact expres-
sions for eigenvalues L0 and L1 are available for all lattices
under consideration: sq [7,11–13], hc [2,9], and pt [8].

We start from the Ising model on the sq lattice. On-
sager [7] has obtained expressions for all eigenvalues
of the transfer matrix. The two leading eigenvalues are
L0 � �2 sinh2J�N�2 exp� 1

2

PN21
r�0 g2r11� and L1 �

�2 sinh2J�N�2 exp� 1
2

PN
r�1 g2r �, where gk is implicitly

given by coshgk � cosh2J coth2J 2 cos�kp�N�. At the
critical point Jc of the sq lattice Ising model, where Jc �
1
2 ln�1 1

p
2 �, one then obtains gk � 2csq� kp

2N �. Here

csq�x� � ln�sinx 1
p

1 1 sin2x � . (6)
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Then the critical free energy fN and critical spin-spin cor-
relation length jN of Eq. (5) can be written as

fN �
1
2

ln2 1
1

2N

N21X
r�0

g2r11 , (7)

j21
N �

1
2

N21X
r�0

�g2r11 2 g2r � . (8)
It is readily seen from Eqs. (6)–(8) that j
21
N and NfN

have odd parity as a function of N21. Therefore, in the
following expansions of j

21
N and NfN as a function of

N21, we keep only odd terms.
To write fN and j

21
N in the form of Eqs. (1) and (2), we

must evaluate Eqs. (7) and (8) asymptotically. These sums
can be handled by using the Euler-Maclaurin summation
formula [14]. After a straightforward calculation, we have
N� fN 2 f`� �
X̀
k�1

2B2k

�2k�!
�22k21 2 1�

µ
p

2N

∂2k21

c �2k21�
sq

�
p

12N
1

7
180

µ
p

2N

∂3

1
31
756

µ
p

2N

∂5

1
10 033
75 600

µ
p

2N

∂7

1 . . . , (9)

j21
N �

X̀
k�1

2B2k

�2k�!
�22k 2 1�

µ
p

2N

∂2k21

c �2k21�
sq �

p

4N
1

1
12

µ
p

2N

∂3

1
1
12

µ
p

2N

∂5

1
1343
5040

µ
p

2N

∂7

1 . . . . (10)
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Here B2k are the Bernoulli numbers and c
�2k21�
sq �

�d2k21csq�x��dx2k21�x�0; b2 � p3�96 has been com-
puted previously by Derrida and de Seze [13].

For the Ising model on the honeycomb lattice, Husimi
and Syozi [9] found that L0 � �2 sinh2J�N exp�g1 1

g3 1 · · · 1 gN21� and L1 � �2 sinh2J�N exp� 1
2g0 1

g2 1 · · · 1 gN22 1 1
2gN �, where the gr are given

by coshgr � cosh2J cosh2J� 2 sin2 pr
N 2 cos pr

N 3

�sinh22J sinh22J� 2 sin2 pr
N �1�2. Here J� is defined by

�cosh2J 2 1� �cosh2J� 2 1� � 1, so that one has J� � J
at the critical point �Jc � 1

2 ln�2 1
p

3 �� and one then
obtains gr � 2chc� rp

2N �, where

chc�x� � ln�A�x� 1
p

A2�x� 2 1 	 , (11)

with A�x� � �
p

8 1 cos22x 2 cos2x��2. Using the Euler-
Maclaurin summation formula, we can write the free en-
ergy fN and the inverse spin-spin correlation length j

21
N

for the hc lattice as

N� fN 2 f`� �
X̀
k�1

p
3 B2k�22k21 2 1�

�2k�!

µ
p

2N

∂2k21

c
�2k21�
hc

�
p

12N
2

31
210

µ
p

3N

∂5

1
511
110

µ
p

3N

∂9

1 . . . , (12)

j21
N �

X̀
k�1

p
3 B2k�22k 2 1�

�2k�!

µ
p

2N

∂2k21

c
�2k21�
hc

�
p

4N
2

3
10

µ
p

3N

∂5

1
93
10

µ
p

3N

∂9

1 . . . , (13)

where c
�2k21�
hc � �d2k21chc�x��dx2k21�x�0.

For the case of the pt lattice, we note that one can use
the star-triangle transformation to transform the hc to the pt
lattice [11]. The amplitudes of the N23 and N27 correction
terms are identically zero for the hc and the pt lattices.
The above results for the sq, hc, and pt lattices can be
summarized as

N� fN 2 f`� �
X̀
k�1

2B2k�22k21 2 1�
z �2k�!

µ
p

2aN

∂2k21

c �2k21�,

(14)

j21
N �

X̀
k�1

2B2k�22k 2 1�
z �2k�!

µ
p

2aN

∂2k21

c �2k21�, (15)

where a � 1, z � 1, c�x� � csq�x� for the sq lattice,
a � 1, z � 2�

p
3, c�x� � chc�x� for the hc lattice, and

a � 2, z � 1�
p

3, c�x� � ctr �x� � chc�x� for the pt
lattice. The ratios of the nonvanishing amplitudes of the
N2�2k21� correction terms in the spin-spin correlation
length and the free energy expansion, i.e., bk�ak , are the
same for all three lattices under consideration [15]. Thus
we have established Eq. (3).

To check whether Eq. (3) is still valid for other models in
the Ising universality class, we proceed to study a quantum
spin model on a one-dimensional lattice of N sites with
periodic boundary conditions, whose Hamiltonian is [10]

H � 2
l

2g

NX
n�1

sz
n

2
1

4g

NX
n�1

��1 1 g�sx
n11sx

n 1 �1 2 g�sy
n11sy

n� ,

(16)

where sx , sy , and sz are the Pauli matrices. The phase
diagram is well known [16]. For all g �0 , g # 1�, there
is a critical point at lc � 1, which falls into the two-
dimensional Ising universality class. The inverse corre-
lation length j

21
i is given by the difference in eigenvalues

Ei 2 E0 of the Hamiltonian H. In particular, the first en-
ergy gap gives the inverse spin-spin correlation length j

21
1

and the second energy gap is the inverse energy-energy
correlation length j

21
2 . By expanding the exact solution
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of Eq. (16), Henkel [17] has obtained several finite-size correction terms to the ground state energy E0, to the first
�E1 2 E0� and second �E2 2 E0� energy gaps. We have extended the calculations to arbitrary order and found that

2E0 2 Na0 �
X̀
k�1

2B2k�22k21 2 1�
�2k�!

µ
p

2N

∂2k21

c �2k21�
q

�
p

12N
2

7
15

µ
1

g2 2
4
3

∂ µ
p

4N

∂3

2
62
63

µ
1

g4 2
16
15

∂ µ
p

4N

∂5

1 . . . , (17)

E1 2 E0 �
X̀
k�1

2B2k�22k 2 1�
�2k�!

µ
p

2N

∂2k21

c �2k21�
q �

p

4N
2

µ
1

g2 2
4
3

∂ µ
p

4N

∂3

2 2

µ
1

g4 2
16
15

∂ µ
p

4N

∂5

1 . . . ,

(18)

E2 2 E0 �
X̀
k�1

8k
�2k�!

µ
p

2N

∂2k21

c �2k21�
q �

2p

N
1 16

µ
1

g2 2
4
3

∂ µ
p

4N

∂3

2 16

µ
1

g4 2
16
15

∂ µ
p

4N

∂5

1 . . . , (19)
where c
�2k21�
q � �d2k21cq�x��dx2k21�x�0, cq�x� �p

sin2x 2 �1 2 1�g2� sin4x, and a0 is a nonuniver-
sal number a0 � 2

p

Rp

0 cq�x� dx � 2�1 1 arccosg�
�g

p
1 2 g2 ���p . Thus, the ratios of amplitudes for

�E1 2 E0� and �2E0� also satisfy Eq. (3). Equations (17)
and (19) also imply that the ratios r̄k of amplitudes for
�E2 2 E0� and �2E0� are g independent and given by

r̄k �
4k

�22k21 2 1�B2k
. (20)

It is of interest to compare this finding with other results.
The exact and numerical estimates [18] of the subdominant
correction amplitudes for the sq, hc, and pt lattices are pre-
sented in Table I, which shows that the numerical values
obtained by de Queiroz [18] are very close to our exact re-
sults. On the basis of conformal invariance, the asymptotic
finite-size scaling behavior of the critical free energy and
the inverse correlation length is found to be [19]

lim
N!`

N2� fN 2 f`� �
cp

6
, (21)

lim
N!`

Nj21
i � lim

N!`
N�Ei 2 E0� � 2pxi , (22)

where c is the conformal anomaly number and xi is the
scaling dimension of the ith scaling field. For the 2D Ising
model, we have c � 1�2, x1 � h�2 � 1�8, and x2 � 1,
and the leading terms of Eqs. (14), (15), (17)–(19) for all
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of the sq, hc, and pt lattices and a quantum spin chain
are consistent with Eqs. (21) and (22). Equations (21) and
(22) imply immediately that their ratio is also universal,
namely,

lim
N!`

E1 2 E0

N� fN 2 f`�
� r1 and lim

N!`

E2 2 E0

N� fN 2 f`�
� r̄1 ,

(23)

where r1 � 12x1�c and r̄1 � 12x2�c. For the 2D Ising
universality class we have r1 � 3 and r̄1 � 24, which are
consistent with Eqs. (3) and (20) for the case k � 1.

The corrections to Eqs. (21) and (22) can be calculated
by means of a perturbated conformal field theory [20,21].
In general, any lattice Hamiltonian will contain correction
terms to the critical Hamiltonian Hc,

H � Hc 1
X
p

gp

Z N�2

2N�2
fp�y� dy , (24)

where gp is a nonuniversal constant and fp�y� is a pertur-
bative conformal field. Below we will consider the case
with only one perturbative conformal field, say, fl�y�.
Then the eigenvalues of H are

En � En,c 1 gl

Z N�2

2N�2
�njfl�y�jn� dy 1 . . . , (25)

where En,c are the critical eigenvalues of H. The ma-
trix element �njfl�y�jn� can be computed in terms of the
TABLE I. Comparison of exact [Eqs. (9), (10), and (12)–(15)] and numerical [18] values for subdominant finite-size correction
terms in free energy and inverse spin-spin correlation length expansion.

Square Honeycomb Triangular
Exact Numerical Exact Numerical Exact Numerical

a2 0.15072 . . . 0.150730�2� 0 ,1026 0 ,1026

b2 0.322982 . . . 0.322987�6� 0 ,1028 0 ,1028

a3 0.39213 . . . 0.385�1� 20.18590 . . . 20.1865�10� 20.01161 . . . 20.01165�5�
b3 0.79692 . . . 0.790�1� 20.37780 . . . 20.3777�2� 20.02361 . . . 20.02360�1�
a4 3.13146 . . . 0 0
b4 6.28759 . . . 0 0
a5 48.9925 . . . 7.03535 . . . 0.02748 . . .
b5 98.0809 . . . 14.0844 . . . 0.05501 . . .
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universal structure constants �Cnln� of the operator product
expansion [20]: �njfl�y�jn� � �2p�N�xl Cnln, where xl is
the scaling dimension of the conformal field fl�y�. The
correlation lengths �j21

n � En 2 E0� and the ground state
energy �E0� can be written as

j21
n �

2p

N
xn 1 2pgl�Cnln 2 C0l0�

µ
2p

N

∂xl21

1 . . . ,

(26)

E0 � E0,c 1 2pglC0l0

µ
2p

N

∂xl21

1 . . . . (27)

Equations (26) and (27) show that, while the amplitude of
correction to scaling terms are not universal, ratios of them
are. For the 2D Ising model, one finds [22] that the leading
finite-size corrections �1�N3� can be described by the
Hamiltonian given by Eq. (24) with a single perturbative
conformal field fl�y� � L2

22�y� 1 L̄2
22�y� with scaling

dimension xl � 4. The universal structure constants C2l2,
C1l1, and C0l0 can be obtained from the matrix ele-
ment �njL2

22�y� 1 L̄2
22�y�jn�, which have already been

computed by Reinicke [23] (C2l2 � 1729�5760, C1l1 �
27�720, and C0l0 � 49�5760). Equations (26) and (27)
imply that the ratios of first-order correction amplitudes for
�En 2 E0� and �2E0� are universal and equal to �C0l0 2

Cnln��C0l0, which is consistent with Eqs. (3) and (20) for
the cases n � 1, k � 2 ��C0l0 2 C1l1��C0l0 � 15�7� and
n � 2, k � 2 ��C0l0 2 C2l2��C0l0 � 2240�7�, respec-
tively. By comparing the amplitudes of the N23 correction
terms for the Ising model and the quantum spin chain
with the general results of Eqs. (26) and (27), one can find
that gl � �3�g2 2 4��56p for the quantum spin chain
and gl � 21�28p for the Ising model on the sq lattice.
For the Ising model on the hc and pt lattices we find that
gl � 0, which indicates that at least two perturbative
conformal fields are necessary to generate all finite-size
correction terms. Further work has to be done to possibly
evaluate exactly all finite-size correction terms from per-
turbative conformal field theory.

The results of this Letter inspire several problems for
further studies: (i) On the basis of perturbated conformal
field theory, can one find other universal amplitude ratios?
(ii) How do such amplitudes behave in other models, for
example, in the three-state Potts model? (iii) For the criti-
cal Ising model on a large N 3 M sq lattice (M�N is a
finite number), we have obtained expansions in N21 for the
free energy, the internal energy, and the specific heat [24].
It is of interest to extend such expansions to inverse spin-
spin correlation lengths and to hc and pt lattices, and to
study whether the amplitude ratios are also universal.
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