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Fano and Kondo Resonance in Electronic Current through Nanodevices

Bogdan R. Bułka and Piotr Stefański
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Electronic transport through a quantum dot strongly coupled to electrodes is studied within a model
with two conduction channels. It is shown that multiple scattering and interference of transmitted waves
through both channels lead to Fano resonance associated with Kondo resonance. Interference effects are
also pronouncedly seen in transport through the Aharonov-Bohm ring with the Kondo dot, where the
current characteristics continuously evolve with the magnetic flux.
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Recent electron transport experiments performed in a
single electron transistor strongly coupled to electrodes [1]
and by a scanning tunneling microscope (STM) on a single
magnetic adatom on a metallic surface [2,3] showed that
the Kondo resonance [4] occurs simultaneously with the
Fano resonance [5]. Multiple scatterings of traveling elec-
tronic waves on a localized magnetic state are crucial for a
formation of both resonances. The condition for the Fano
resonance to appear is the presence of at least two scatter-
ing channels: the discrete level and the broad continuum
band [5,6]. In the mesoscopic systems the nature of two
conduction channels is dependent on the geometry of the
device under consideration. Interferometer geometry is re-
alized when an Aharonov-Bohm ring with a quantum dot
(QD) placed in one of the arms is studied [7–9]. When
an adatom is deposited on the metallic surface, the STM
tip probes indirectly the hybridized local adatom level to-
gether with the band of surface electrons [2,3,10,11]. We
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consider the transmission geometry, when the coupling
of the QD to the leads increases to a strong regime [1]
and additional transmission channels are activated. The
QD is a multilevel system and the transmission through a
higher level (close to the Fermi energy) can be treated as
an effective bridge channel. Although the electron trans-
port through the QD is governed by the Kondo effect,
interference processes are essential and can produce the
Fano-shaped resonances. It is also interesting to analyze
the Aharonov-Bohm ring with the Kondo impurity. In such
a system one can continuously change the interference con-
ditions by varying a magnetic flux and can observe the
resulting evolution of the current characteristics from the
Kondo peak to the Fano dip. The studies have been per-
formed for various energies of the impurity state: in the
Kondo regime, in the mixed-valence regime, as well as in
the empty state regime.
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The first term describes electrons in the left (L) and the
right (R) electrodes, the second one describes the quantum
dot with a single state e0 and Coulomb interactions char-
acterized by the parameter U, the third one corresponds to
the tunneling from the electrodes to the dot, and the last
one describes the bridge channel over the dot.

The current from the left electrode can be calculated
from the time evolution of the occupation number NL �P
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y
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Green functions of the Keldysh type [12]. The result is
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where G,
0,kLs�v� and G,

k0Rs,kLs�v� are the lesser Green
functions corresponding to the states at the dot and in the
left electrode or the states in both the electrodes, respec-
tively. Next, we use the Dyson equation to calculate the
nonequilibrium Green functions and express J only by the
Green function G00 at the dot and the bare Green functions
ga in the electrodes. The lesser, retarded, and advanced
Green functions ga are taken in the form g,

a � 2iprfa

and gr ,a
a � 7ipr, where fa denotes the Fermi distribu-

tion function for electrons in the a electrode and r is the
density of states. All multiple scatterings on the dot and
the contacts, as well as interference processes, are taken
into account. Assuming quasielastic transport, for which
the current conservation rule is fulfilled for any energy v,
one obtains
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(3) includes two new terms: the first one corresponding
to the current through the bridge channel and the second
one proportional to ReGr

00�v�, which is responsible for
the Fano resonance [5].

In order to determine the Green function Gr
00 we choose,

among a few known approaches [4], the equation of motion
(EOM) method. Although the EOM describes the Kondo
resonance only qualitatively, it takes into account all rele-
vant interference processes and can be applied straightfor-
wardly for our model (1) with the bridge channel. The
method generates higher-order Green functions, which are
truncated according to the self-consistent decoupling pro-
cedure proposed by Lacroix [13]. In the limit U ! ` the
Green function at the dot is determined as
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where C is the digamma function and eFa denotes the po-
sition of the Fermi level in the a electrode. Derivations
were performed for the constant density of states r�e� �
1�2D for jej , D (in our further calculations D is taken
as unity). The Green function (4) is similar to that one
obtained by Lacroix [13] if one exchanges the tunneling
matrix ta0 by an effective one zr

a . The electron concentra-
tion at the dot is given by

n � 2
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where f0�v� � gLfL�v� 1 gRfR�v� is the nonequilib-
rium distribution function at the dot, gL � jzLj
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At T � 0 the functions Ha�v� and Fa�v� have loga-

rithmic singularities at v � eFa , but G00�v� varies more
smoothly around this point. At equilibrium Eq. (4) can be
written as
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A solution of this equation is Gr
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�2iD0�, where the phase f is taken according to the
Friedel sum rule [4] as f � pn�2. On insertion of Gr
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into (3) one can find the conductance (for the zero bias
voltage V ! 0)
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The electron concentration n can be associated with the
relative position of the level De � eF 2 e0 as [4] n �
1
2 1

1
p tan21�De�D0�, which can be varied by the gate

voltage applied to the dot.
For finite temperatures the set of the self-consistent

equations (4), (5), and (7) is solved numerically.
Figure 1a presents the results for the zero-bias conduc-
tance G through the system with the Kondo dot only
(tLR � 0). The Kondo temperature is within the EOM
[13] TK � 0.57 exp�2pDe�D0��kBr and the crossover
from the mixed-valence to the Kondo regime is at Decr �
D0�p 2 D0�p ln�rD0�2p�, which gives Decr � 0.056
and max�TK � � 0.004 for the parameters used in Fig. 1.
At T � 0, G is a steplike function, whose maximum value
2e2�h is reached in the Kondo regime (see also [14]).

FIG. 1. Conductance through the Kondo system with tLR � 0
(a), tLR � 20.2 (b), and tLR � 0.2 (c) as a function of De for
T � 0, 2 3 1026, 2 3 1024, and 2 3 1022. For comparison
G is shown for the dot without Coulomb interactions (U � 0)
at a high temperature T � 0.02 (the dashed curves). In all our
calculations tL0 � 0.1, tR0 � 0.1, for which D0 � 0.031.
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At very high temperature T ¿ TK Coulomb interactions
are irrelevant, and the conductance peak is at De � 0
(see the curve corresponding to T � 0.02 in Fig. 1a).
When T , TK the peak is shifted to the Kondo regime
and increases logarithmically for T ! 0. Such a shift
was observed in many experiments on quantum dots [15].
Since the EOM underestimates temperature dependences,
one can expect more pronounced temperature changes for
G than predicted by this method.

Figures 1b and 1c present the results for the system with
the bridge channel. The conductance curves have an asym-
metric shape, which is typical for a Fano resonance. The
effect can be clearly visible for jtLRj * jtL0j, jtR0j. If tLR is
negative (Fig. 1b), G exhibits a large maximum, whereas
a deep minimum exists for positive values of tLR (Fig. 1c).
This results from constructive and destructive interference
processes for electrons transmitted through two channels.
Comparing G for the interacting and the noninteracting
case (the solid and the dashed curves, respectively, in
Fig. 1) one sees that correlations on the dot weaken the
Fano resonance effect (the maximum and the minimum
for the solid curves are smaller in the Kondo regime than
those for the dashed curves).

In a similar way we calculated the source-drain voltage
characteristics of the device. It was assumed that the po-
tential V is applied to the left electrode and in the right
electrode the potential is kept zero. Figure 2 presents the
evolution of the differential conductance dI�dV with the
variation of the relative position of the impurity level De,
from the Kondo to the mixed-valence regime. The case for
the pure Kondo dot (tLR � 0) is given in Fig. 2a. If the
impurity level lies in the Kondo regime, the curves show a
very narrow peak at low voltage due to the Anderson hy-
bridization. The sharp feature in the mixed-valence regime
(the dash-dotted curve in Fig. 2a) we attribute to the EOM
method. The peak disappears when De approaches the
empty state regime (see the dotted curve). Out of equi-
librium the Kondo peak is split into two peaks, which are
pinned to eF 1 eV and eF (i.e., to the chemical potentials
of the left and the right electrode, respectively). This is
manifested in the narrow peak of dI�dV , which was ob-
served experimentally as well [15]. The broad maximum
seen in Fig. 2a results from the resonant tunneling when
the chemical potential eF 1 eV approaches e0.

The influence of the bridge channel is presented in
Figs. 2b and 2c. A direct electron transmission increases
the differential conductance (for our case the bridge chan-
nel contribution to G is 0.33 3 2e2�h). The dI�dV curves
in Fig. 2b are similar to those in Fig. 2a. Although the
broad resonance maxima are deformed, there are well pro-
nounced narrow peaks in the low voltage regime. The situ-
ation for tLR � 0.2, presented in Fig. 2c, is, however,
different. In the low voltage range the curves show a nar-
row dip instead of a peak. In this case there is a destructive
interference of electronic waves passing through the bridge
and the Kondo dot. If a small voltage is applied the trans-
mission through the Kondo dot is lowered, which weakens
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FIG. 2. Differential conductance as a function of the applied
voltage for De � 0.15 (solid curve), 0.1 (dashed curve), 0.05
(dash-dotted curve), and 0 (dotted curve) at T � 2 3 1024.

interference of the two channels. It results in the open-
ing of the bridge channel and increase of the conductance.
We found that temperature and voltage characteristics for
the dip are similar to those for the low voltage peak in the
Kondo dot. It is not surprising as the Kondo resonance
plays a crucial role in both the situations.

Recent experiments performed by Göres et al. [1]
showed that the gray-scale plot of dI�dV in the plane of the
gate voltage and the source-drain voltage has a diamond-
shaped structure. The behavior is familiar to that one
found in the Kondo dot; however, it is a negative picture
with dips in place of peaks. As we explained above, the
picture results from weakening of destructive interference
processes in the system and opening the bridge channel.

Let us now analyze electron transport though the
Aharonov-Bohm ring with the Kondo dot. In this case
the hopping integrals are complex numbers tn � jtnjeifn

(n � LR, L0, R0), where fn corresponds to the phase
of the electronic wave passing through the n arm of the
ring in the presence of the magnetic field. At T � 0
the conductance is given by Eq. (9), which simplifies the
Kondo regime (n � 1) to the form
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Here, F � �fLR 2 fL0 2 fR0��2pF0 is the magnetic
flux enclosed in the ring and F0 � hc�e denotes the
one-electron flux quantum. For T . 0 the electronic trans-
port is calculated numerically and the results are pre-
sented in Fig. 3. The conductance shows oscillations with
F (Fig. 3a) with a large amplitude in the mixed-valence
regime. In the Kondo regime the amplitude is smaller, but
strongly temperature dependent. Figure 3b presents evolu-
tion of the voltage dependence of dI�dV with the magnetic
flux F. At F � 0 there is a dip in the curve, which is con-
tinuously transformed to a peak for F � 0.5hc�e.

Just recently van der Wiel et al. [9] have performed an
experiment on electron transport through the Aharonov-
Bohm ring made in two-dimensional electron gas with
a quantum dot in one of the arms. The zero-bias con-
ductance, in their experiment, increases considerably and

FIG. 3. Characteristics of the Aharonov-Bohm ring with the
Kondo dot: (a) the zero-bias conductance vs the magnetic flux
for De � 0.1, 0.05, 0 at T � 2 3 1026 (solid curves) and T �
0 (dashed curves); (b) the differential conductance vs the source-
drain voltage for F � 0.5hc�e (solid curves), 0.25hc�e (dashed
curves) , 0.125hc�e (dash-dotted curves), and 0 (dotted curves)
at T � 2 3 1026, De � 0.05.
can reach even the value of 2e2�h in some magnetic field
ranges. It is in agreement with our results in Fig. 3a, where
G can increase to 2e2�h for the Kondo dot if T ! 0 (see
also [8]). We expect that this type of experiment [7,9]
should also show transformation from a peak to a dip in
the voltage dependence of dI�dV as a function of flux
through the ring (as seen in Fig. 3b).

Summarizing, our theoretical studies of the electronic
transport through the quantum dot of the Kondo type
showed that the interference of traveling waves with the
localized state can lead to the Fano effect, for which the
current characteristics are strongly modified in the Kondo
regime. The source-drain voltage dependence of the
conductance exhibits a large peak or a dip, depending on
the interference conditions. We predict that interference
effects should be pronouncedly seen in transport through
the Aharonov-Bohm ring with the Kondo dot.
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Note added.—After submission of this Letter we
learned of work by Heemeyer [16], in which qualitatively
similar results were obtained for the zero-bias conductance
(as in Fig. 1) within the mean-field slave-boson approach
for the model with the bridge channel.

[1] J. Göres et al., Phys. Rev. B 62, 2188 (2000).
[2] W.-D. Schneider, Pramana J. Phys. 52, 537 (1999); J. T. Li

et al., Phys. Rev. Lett. 80, 2893 (1998).
[3] V. Madhavan et al., Science 280, 567 (1998).
[4] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[5] U. Fano, Phys. Rev. 124, 1866 (1961).
[6] E. Tekman and P. F. Bagwell, Phys. Rev. B 48, 2553 (1993);

J. U. Nöckel and A. D. Stone ibid. 50, 17 415 (1994).
[7] A. Yacoby et al., Phys. Rev. Lett. 74, 4047 (1995); Y. Ji

et al., cond-mat/0007332 v2.
[8] U. Gerland et al., Phys. Rev. Lett. 84, 3710 (2000).
[9] W. G. van der Wiel et al., Science 289, 2105 (2000).

[10] A. Schiller and S. Hershfield, Phys. Rev. B 61, 9036 (2000).
[11] O. Újsághy et al., Phys. Rev. Lett. 85, 2557 (2000).
[12] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992); A.-P. Jauho et al., Phys. Rev. B 50, 5528 (1994);
H. Haug and A.-P. Jauho, Quantum Kinetics in Transport
and Optics of Semiconductors (Springer-Verlag, Berlin,
Heidelberg, New York, 1998).

[13] C. Lacroix, J. Phys. F 11, 2389 (1981).
[14] L. I. Glazman and M. E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz.

47, 378 (1988) [JETP Lett. 47, 452 (1988)]; T. K. Ng and
P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988); A. Kawabata,
J. Phys. Soc. Jpn. 60, 3222 (1991).

[15] D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225
(1998); D. C. Ralph and R. A. Buhrman ibid. 72, 3401
(1994); S. M. Cronenwett et al., Science 281, 540 (1998);
L. P. Rokhinson et al., Phys. Rev. B 60, 16 319 (1999).

[16] S. Heemeyer, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 2000.
5131


