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We report on magnetoresistance transport measurements performed on a bipartite tiling of rhombus in
the GaAs/GaAlAs system. We observe for the first time large amplitude h�e oscillations in this network
as compared to the one measured in square lattices of similar size. These oscillations are the signature of
a recently predicted localization phenomenon induced by Aharonov-Bohm interferences in this peculiar
network.
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A magnetic field applied to a two-dimensional regular
network induces a competition between the spatial period
of the lattice and the magnetic period. During the last
decades, this phenomenon of frustration induced by a mag-
netic field has been the object of intensive investigations.
From a theoretical point of view, this subtle interplay leads
to a complex energy spectrum which can be analyzed using
a simple tight-binding model for noninteracting electrons.
For the square lattice case, the spectrum is described by
the famous Hofstadter butterfly [1]. A great number of ge-
ometries have been studied like, for instance, honeycomb
[2] and triangular lattices [3] but also fractal structures [4].
As phase coherence of the wave function is an essential
ingredient, the first experiments have been performed in
a network made of superconducting wires. In this case,
there is a direct mapping between the solution of the linear
Ginzburg-Landau equation and the tight-binding problem,
leading to a direct link between the critical temperature
and the energy spectrum [5,6].

In the case of normal networks, the disorder plays an
important role. For instance, the Aharonov-Bohm (AB)
effect, which modulates the interference pattern between
two paths encircling a flux, is averaged to zero when deal-
ing with an array of loops. This is due to the stochastic
nature of the phase of the wave function in each individ-
ual cell, which depends on the microscopic configuration
of the disorder. Thus, the F0 � h�e period signal de-
creases as 1�

p
N when N loops are connected in series

[7]. The only phase coherent effect which persists is the
Altshuler-Aronov-Spivak (AAS) oscillation [8] whose pe-
riod is h�2e. In this case, interference concerns pairs of
time reversal trajectories with a well defined phase which
is modulated by the magnetic field. Then, all loops add co-
herently. In real samples, due to the nonzero width of the
wires, there is a mixing of the different trajectories with
various frequencies and phases, and only few oscillations
are visible.

Recently, a new localization phenomenon induced by a
magnetic field in a 2D lattice has been reported [9]. The
authors consider a bipartite hexagonal structure containing
three sites per unit cell, one sixfold coordinated and two
threefold coordinated. In this so-called T3 lattice, the
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propagation of the electron wave function is bounded
in a small number of cells, called an AB cage, for a
particular magnetic flux [F � F0�2, see the atomic-force
microscopy (AFM) picture of our sample in the inset
of Fig. 1]. The tight-binding model shows that, for this
magnetic flux, the energy spectrum collapses into three
infinitely degenerate levels, predicting a divergence of
the resistance. The overall spectrum is periodic with a
period h�e.

This theoretical result is obtained for a pure network
made of sites coupled by hopping. One may ask whether
this effect will persist in a network made of 1D metal wires.
This point, as well as the effect of the disorder, has been
recently investigated theoretically [10]. The cage effect
is expected to be more robust against disorder averaging
than the standard AB oscillations. This strong localiza-
tion effect should hence be observable in transport mea-
surements by periodic modulation of the resistance, with a
period h�e.

The first experiments on the T3 lattice have been per-
formed on a superconducting material [11]. The bottom

FIG. 1. Magnetoresistance at T � 30 mK of a T3 lattice be-
tween 0 and 2 T. The inset shows an AFM view of the sample.
The width of each wire is about 0.4 mm and the area of a unit
rhombus is equal to 0.8 mm2, leading to a quantum flux F0 for
B � 50 G. An AB cage is underlined in white.
© 2001 The American Physical Society
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of the computed energy spectrum has been reproduced
through the variation of the critical temperature versus
the magnetic flux. As far as the localization is con-
cerned, it has been evidenced by a strong depression
of the critical current and a broadening of the super-
conducting transition at F � F0�2. Up to now, no
measurement has been reported on normal metal transport
properties.

In this Letter, we present the first evidence of AB cages
in a normal network tailored in a high mobility two-
dimensional electron gas (2DEG). Low temperature
magnetoresistance measurements of T3 lattices show
clear h�e oscillations in arrays of 2500 cells. From the
temperature dependence of these oscillations we are able
to extract a large characteristic length compared to that
measured on a single cell. Experiments performed on
square lattices of similar size do not show such a behavior,
further supporting the existence of the cage effect. More
strikingly, at high magnetic field, h�2e oscillations appear
whose amplitudes can be much higher than the funda-
mental period. The temperature dependence is similar
to that of the h�e signal. These observations dismiss a
simple interpretation in terms of harmonics generation.
The origin of this phenomenon is still unclear and needs
more investigations.

We have used molecular beam epitaxy grown AlGaAs-
GaAs heterojunctions as starting material to fabricate the
samples. When cooled down to liquid helium tempera-
ture the as-grown 2DEG has an electron density n � 3 3

1011 cm22 and a mobility m � 106 cm2 V21 s21. These
values yield a Fermi wavelength lf � 65 nm and an elas-
tic mean free path le � 6.4 mm. With these parame-
ters, the phase coherence length is usually of the order
of LF � 20 mm below T � 0.1 K [12]. A JEOL 5DIIU
electron beam writer was used to define the sample pat-
terns. By lift-off, we first deposited an aluminum mask
which was subsequently transferred into the 2DEG by ar-
gon ion etching. The inset of Fig. 1 shows a detailed view
of the T3 tiling. Between the voltage probes, the array
spans a 80 mm 3 25 mm surface. Since the area of a unit
rhombus cell is 0.8 mm2, we probe about 2500 cells, one
flux quantum F0 per unit cell corresponding to a magnetic
field of 50 G.

In such a clean system the main origin of the disorder
arises from the distribution of the transmission coefficients
at the nodes rather than from variations of the wire length.
Indeed, our lithography has a precision better than 10 nm
which is much smaller than lf . This disorder will reduce
the strong localization of the cage effect at f � 1�2 to a
h�e periodic modulation of the magnetoresistance as pre-
dicted by theory [10]. However, the expected amplitude is
difficult to evaluate using the above-mentioned theoretical
approach since in this work, random phase shifts are simu-
lated by a random modulation of the wire length. The main
result is that the cage effect is robust up to a length varia-
tion of magnitude lf .
The nominal width of the wire defining the network is
0.4 mm, but the effective electrical width is considerably
smaller due to the lateral depletion resulting from the
etching process. Indeed, by varying the energy of the
ions and/or the etching time, we can prepare samples
presenting a slight side depletion of about 0.1 mm to a
completely depleted wire. This is an important point since
in the quantum Hall effect (QHE) regime, the current is
carried by edge states: opposite sample edges carrying the
flow in opposite directions [13]. In a ring geometry only
the inner states encircle a flux and the AB signal vanishes
for wide enough samples [14]. As in high mobility ma-
terials the appearance of the QHE regime starts at rather
small magnetic fields (less than 1000 G), the real width of
the samples must be small enough if one wants to observe
oscillations for a comfortable range of magnetic field. In
order to investigate the effect of lateral depletion, we have
then fabricated sets of wires of different widths. When the
conductance at T � 4 K is no longer proportional to the
mask width, we conclude that only a few conducting chan-
nels are present. Thus we adjust the etching parameters
to fulfill this criterion for a mask wire width of 0.4 mm.
Indeed, with somewhat shallow etching, well defined
Shubnikov–de-Haas oscillations are observed at low
temperature on our arrays indicating the presence of edge
states. Increasing the etching time and/or energy washes
out these oscillations. We have investigated about ten
samples prepared with the above described deep etching
process. The square resistance of the arrays was always
below 10 kV leading to a resistance per connecting
line smaller than 12 kV; charging effects are thus not
relevant. This is confirmed by linear I-V characteristics.
All samples made this way have shown the h�e signal.

The samples are placed on the cold finger of a dilution
refrigerator and cooled down to 30 mK. A perpendicu-
lar magnetic field of up to 7 T can be applied. Measure-
ments are recorded using an ac resistance bridge working
at 33 Hz or lock-in amplifiers with a current injection of
10 nA.

A typical magnetoresistance plot for a T3 lattice is
shown in Fig. 1. Rapid oscillations are superimposed on
large scale fluctuations of the overall signal. We substract
a polynomial fit of the data to the experimental points in
order to extract the small period oscillations. This resulting
signal is then Fourier transformed (Fig. 2). A clear peak
appears on the spectrum at a frequency corresponding to
55 G, the width of which is about 18 G. This width arises
due to the flux difference between the innermost and the
outermost trajectories in a rhombus. From this measured
value we can estimate the effective wire width to be 60 nm,
indicating that few channels are present. The typical am-
plitude of the oscillations is DR � 100 V leading to a
value of 0.02 e2�h in terms of conductance. This has to
be compared to the one obtained from a single rhombus.
We measured a 0.05 e2�h typical amplitude for a single
unit tile fabricated on the same dice.
5105



VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001
0.00 0.05 0.10 0.15 0.20

0

2

4

6

8

10

12

Magnetic Field (Tesla)

h/e

F
ou

ri
er

 A
m

p
li

tu
d

e 
(a

. u
.)

1/∆∆B (Gauss
-1

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-200

-150

-100

-50

0

50

100

150

200
∆R

 (
O

hm
)

FIG. 2. (left) Amplitude of the small period oscillations for
the T3 lattice versus the magnetic field, extracted from the ex-
perimental data using the procedure described in the text. (right)
Fourier transform of the above oscillations. A clear peak appears
at 1�55 G21 corresponding to a flux quantum h�e in a unit cell.

The expected amplitude reduction due to the above dis-
cussed averaging process �1�

p
2500 � would then yield an

amplitude of 0.001 e2�h. This is far less than the one we
measure, giving a first indication of the presence of cages
for the T3 lattice.

To validate the peculiarity of this topology, for each
etching run we have also patterned on the same dice
80 mm 3 25 mm square lattices with similar wire width
and unit cell area. The typical square resistance of these
arrays is in the same range as that of the T3 network.
Following the same data analysis [15], we obtain typically
in this case the features shown in Fig. 3. One can hardly
distinguish a peak in the Fourier transform signal. The
h�e signal, if any, is embedded in the 1�f universal
fluctuations contribution, its amplitude being at least
1 order of magnitude smaller than the T3 one for all the
investigated samples.

In Fig. 4 we have plotted on a log-log scale the tempera-
ture dependence of the h�e peak of the Fourier transform
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FIG. 3. Same signals as in Fig. 2 but for the square lattice.
Note that the amplitude in this case is about 10 times smaller
than for the T3 lattice.
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for both the T3 lattice (≤) and the single rhombus (�). For
a single loop the amplitude of the AB signal is expected
to follow a T21�2 law, because of temperature averaging,
as long as the size of the loop is smaller than LF . When
the temperature is such that L . LF the AB signal falls
off exponentially [16]. Then, we expect this critical tem-
perature to be lower for the T3 network compared to that
of a single tile, since for the former the characteristic size
is the perimeter of a cage, namely 12 mm, to be com-
pared to the 4 mm perimeter of a rhombus (see inset of
Fig. 1). The experimental results depicted in Fig. 4 show
that this cutoff temperature is around 1 K for the rhombus,
whereas it is below 100 mK for the T3. If one assumes
a T21�3 temperature dependence for LF as has been ob-
served in AlGaAs systems [17], the ratio of the measured
critical temperatures gives a lower bound ratio for the criti-
cal lengths of 2.2 [18], in good agreement with the geo-
metrical dimensions. This is another important evidence
of the role of the AB cages in the transport properties of
this peculiar network.

Finally, in the high magnetic field regime we observe a
striking frequency doubling in the spectra. If this signal
were a simple harmonic, one would expect the h�2e peak
to be much smaller than the h�e peak since it corresponds
to a trajectory twice as long [19]. But the amplitude of this
peak is of the same order or even larger than that of the fun-
damental. This is shown in Fig. 5 where the relative ampli-
tude variation of the magnetoresistance is plotted as well as
its Fourier transform from 1.5 to 2.17 T. Moreover, if this
signal were a simple harmonic, the characteristic tempera-
ture should be smaller. This is in contradiction with the
measured temperature dependence of the h�2e peak am-
plitude (3 in Fig. 4) which shows a similar decay as that
observed for the fundamental period. It is worth noting that
we never observed such a behavior in the square lattices
and in the single rhombus. Up to now, we have no hint on
the nature of this frequency doubling. Let us also stress

100 1000
0,01

0,1

1

F
ou

ri
er

 A
m

p
li

tu
d

e

Temperature (mK)

FIG. 4. Temperature dependence of the peak amplitude of the
Fourier transform normalized to the value at T � 50 mK. �≤�
and �3� refer to the h�e and h�2e signals, respectively, for the
T3 lattice. (�) refers to the h�e signal for the single rhombus.
Solid line is the T21�2 fit and dotted line the exponential fits.
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FIG. 5. (left) Amplitude of the small period oscillations for
the T3 lattice extracted from the experimental data in the strong
magnetic field range. (right) Fourier transform of the data. The
h�2e peak is much larger than that of the fundamental.

that this signal appears for strong magnetic fields where
the magnetoresistance presents important variations. Of
course, one may think of AAS oscillations when dealing
with an h�2e signal. As mentioned in the introduction, due
to the aspect ratio of the sample, the AAS signal should
vanish for high magnetic fields. Thus, an explanation in
terms of AAS would imply that a high magnetic field in-
duces the squeezing of the wires. But in this case, one
expects to observe a similar effect for the square lattice,
unless the geometry of the T3 network again favors the
appearance of the h�2e oscillations. The study of differ-
ent types of networks and the addition of a gate to control
the depletion is under progress to clarify this phenomenon.

In conclusion, we have measured for the first time large
Aharonov-Bohm type oscillations in an array of rhombus.
The amplitude detected and its temperature dependence
are in favor of a recently suggested cage effect. The com-
parison with a square lattice unambiguously indicates that
this behavior is related to the topology of this peculiar net-
work. We also observe unexpected high amplitude h�2e
oscillations which are still not understood. Nevertheless,
this T3 type of network opens the way to new experimen-
tal systems where the great number of unit cells probed
rules out the problem of reproducibility usually encoun-
tered when dealing with a unique small object. With the
AlGaAs-GaAs system we used, we are very close to the
model of a network of wires with a small number of chan-
nels used in numerical calculation. We can then easily
investigate samples with controlled topological defects or
disorder and compare their behavior with theory.
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