
VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001

5092
Quantum Diffusion of H���Ni���111��� through a Monte Carlo Wave Function Formalism
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We consider a quantum system coupled to a dissipative background with many degrees of freedom
using the Monte Carlo wave function method. Instead of dealing with a density matrix which can be
very highly dimensional, the method consists of integrating a stochastic Schrödinger equation with a
non-Hermitian damping term in the evolution operator, and with random quantum jumps. The method
is applied to the diffusion of hydrogen on the Ni(111) surface below 100 K. We show that the recent
experimental diffusion data for this system can be understood through an interband activation process,
followed by quantum tunneling.
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The study of a quantum system coupled to a large back-
ground reservoir that leads to thermal fluctuations and dis-
sipation in the dynamical evolution of the system is of
central importance in such fields as quantum optics [1],
electronic conduction in nanostructures [2], and diffusion
of light adatoms on surfaces [3–5]. The standard formal-
ism for this problem is through the master equation for the
density matrix rS�t� of the system [3,4]. However, this ap-
proach is not practical for condensed matter systems such
as a hydrogen adatom moving on a metal surface. In this
case, the density matrix would have dimension N2, where
N is the product of the number of sites considered on the
surface and the number of vibrational states included at
each site. Typically, N would be at least of the order of
104, rendering a direct numerical solution of the master
equation unfeasible.

Recently, an alternative approach known as the Monte
Carlo wave function (MCWF) [1] was developed and ap-
plied to solve these types of problems in the field of quan-
tum optics. In the MCWF approach, the evolution of a
quantum state jC�t�� is described by a stochastic wave
equation, in which the original adiabatic Hamiltonian HS

is only a part of the evolution operator:

jC�t 1 dt�� �
f0p

1 2 dp
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µ
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Here the effect of each operator Cm acting on the quantum
system represents a collision with the reservoir degrees
of freedom that takes the system from one quantum state
to another. The new Hamiltonian H is non-Hermitian,
built from HS with an imaginary part added to account
for dissipation:

H � HS 2
ih̄
2

X
m

C1
m Cm . (2)

The stochastic nature of quantum evolution is described
by the quantities f0 and fm. They are random numbers
0031-9007�01�86(22)�5092(4)$15.00
such that the mean value of fm is related to the scattering
probabilities

dpm � dt�C�t�jC1
m CmjC�t�� , (3)

with � fm� � dpm, and � f0� � 1 2 dp, where dp �P
pm gives the probability for coherent propagation

under H. With this choice of dynamics, it can be
shown [1] that the quantity s̄�t�, obtained by averaging
s�t� � jC�t�� �C�t�j over all possible outcomes at time
t of the MCWF evolution equation, coincides with the
density matrix rS�t� obtained from the solution of the
so-called Lindblad form of the master equation [6]:
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m Cm 2 2CmrSC1
m � .

(4)

The equality between s̄ and rS holds at all times t, pro-
vided that it holds at t � 0. The particular form of the
collision operators chosen in Eq. (1) is the most general
one that preserves the normalization and positive definite-
ness of the corresponding rS�t�.

It is the purpose of this Letter to demonstrate how the
MCWF method can be used to tackle important transport
problems in condensed matter physics in cases where the
number of degrees of freedom is large enough �N * 104�
to make the density matrix approach unfeasible. We con-
sider here the case of a light adatom moving on a metal
surface under conditions where the classical activated hop-
ping rate between potential wells is negligible compared
with the corresponding tunneling rate. At present, there
does not exist a clear consensus on the details of the
crossover from the classical activated behavior to the quan-
tum tunneling regime. In the field emission microscopy
(FEM) study [7] for Ni and W substrates and in the latest
scanning tunneling microscopy study for H�Cu(001) [8],
a sharp crossover from classical diffusion to very weak
© 2001 The American Physical Society
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temperature dependence of diffusion was observed at a
temperature in the range of 60 100 K. However, the
quasielastic helium atom scattering study for H�Pt(111)
[9] yields no crossover down to T � 100 K. For the
H�Ni(111) system, recent optical studies [10] showed a
crossover behavior from the classical regime to a sec-
ond activated regime with a lower activation energy be-
low T � 100 K. This is in contradiction with the FEM
data on the same system, which showed a crossover to
a temperature independent diffusion at low temperatures
[7]. Thus, while there is strong evidence that diffusion
proceeds through quantum tunneling at low temperatures,
the detailed mechanisms for hydrogen diffusion on differ-
ent substrates are not yet understood. Previous theoretical
works do suggest that the details of the crossover are sen-
sitive to the shape of the adsorption potential and not just
determined by the barrier alone [3–5].

We will apply here the MCWF method to study the dy-
namics of H�Ni(111). The low temperature activated be-
havior with a barrier of about 90 meV has been attributed
to small polaron type activated tunneling [10]. In our view,
this is a highly implausible explanation. First, the polaron
activation energy for H�Cu(001) [8] was determined to be
	3 meV, then the relaxation energy due to the adatom
for H�Ni(001) was calculated to be 2.72 meV [4], and in
our recent calculations for H�Pt(111) [11] we also found
a relaxation energy of just a few meV; the polaron activa-
tion energy is a fraction of the relaxation energy [12]. We
will show instead that the data can be explained in terms
of tunneling from the first excited vibrational states of the
H adatom.

We construct a semi-empirical potential U�r� based on
available data as follows. The lowest energy adsorption
sites are assumed to be the fcc sites forming a 2D trian-
gular lattice 
l� [13] with a lattice constant a � 2.581 Å
(see Fig. 1). Also, the neighboring hcp sites at a distance
of s � 1.49 Å [10] are taken to be equal in energy [10]
(this is also supported by a recent ab initio calculation
[14]). Second, we fix the barrier between the fcc and hcp
sites close to the value of 196 meV found in experiments
[10]. We use the vibrational excitation energy of 94 meV
known from [15,16]. U�r� is constructed from localized
Gaussians at both the fcc and hcp sites and adjusts the
Gaussian parameters, obtaining a fitting with a band gap
between the centers of the A0 © A1 and the E0 © E1 bands
of D � 96 meV and a separation between the lowest band
and the top of the barrier between fcc and hcp sites of
207 meV.

The adiabatic Hamiltonian HS for our model is charac-
terized by Bloch states 
jk, m�� with corresponding energy

ek,m�. Here m is the band index and k is the 2D wave vec-
tor. The center positions and the bandwidths for the first
few bands are listed in Table I. The first two branches form
1D representations (A0 and A1) of the symmetry group of
the 2D triangular lattice, while the next four form 2D rep-
resentations (E0 and E1).
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FIG. 1. (a) Trajectories at T � 70 K (smaller set) and 110 K
(larger set). g � 1 and the observation time was 3.1 3 1022 s.
(b) Details of the path at T � 70 K. The black circles are ex-
citations or deexcitations. Between two such consecutive points
there are usually several random changes of the momentum.

We describe the H adatom as a linear superposition of
energy eigenstates:

jC�t�� �
X
m,k

bk,m�t� jk, m� , (5)

with
P

m,k jbk,mj
2 � 1. The frictional coupling to the sub-

strate through electronic and phononic excitations is mod-
eled by a general collision operator Cm (1), through which

TABLE I. Bandwidths Dem and band centers em for branches
1 6. Groups 1 2 and 3 6 form the composite bands A0 © A1
and E0 © E1.

m Dem �meV� em �meV�

1 �A0� 0.008 104.487
2 �A1� 0.008 104.497
3 �E0� 0.017 200.346
6 0.017 200.721
4 �E1� 0.146 200.446
5 0.146 200.621
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we model both intraband and interband transitions. It is
represented as

Cm1,m2,q � G1�2
m1m2,q

X
k
jk 1 q, m1� �k, m2j , (6)

where G is a (yet unspecified) transition rate, and m in
Eq. (1) now becomes a multiple index with two band in-
dices, m � �m1, m2, q�. Thus the probabilities for scatter-
ing dpm are given by

dpm � �C�t�jC1
m CmjC�t��dt �

X
k
jbk,m2 j

2Gmdt . (7)

An important feature of the model is that for the low
energy bands of interest, A0 © A1 and E0 © E1, the com-
posite bandwidths are much smaller than the energy gap
D separating them (see Table I). This means that we need
to consider only two types of transitions: interband tran-
sitions between the bands in the two groups and intraband
transitions within each group. Since we do not have a
microscopic expression for the scattering rates Gintra and
Ginter we make one further simplification that is Gintra �
Ginter � G. Below, we will show that the magnitude of D
is controlled by the parameter g � h̄G�DE , where DE is
the width of the upper composite band defined above.

In our numerical calculations, the substrate is repre-
sented by a 2D hexagonal box consisting of 180 3 180
unit cells, with fully periodic boundary conditions. The
size of the system is chosen such that the H adatom does
not spread outside the boundary during the observation
time t. To calculate the spatial ab elements of the tracer
diffusion coefficient of H, we used the expression

Dab�t� � lim
t!`

1
2t

����x̂a 2 �x̂a�0� �x̂b 2 �x̂b�0���� , (8)

where x̂ is the position operator. The average �· · ·� in
Eq. (8) represents both the quantum mechanical average
in a given state as well as the ensemble average over dif-
ferent initial states. Statistical averages to compute D were
performed with 1500 6000 initial states, for time intervals
containing up to 105 collisions. With a code parallelized
on four processors, one point on the Arrhenius plot takes
2 4 h, depending on the collision rates.

The symmetry of the lattice implies that the diffusion
tensor Dab is diagonal. Figure 2 shows the temperature
dependence of D for g � 1, 5, and 10 on an Arrhenius
plot. There is clear activated behavior D ~ e2Ea�kBT ,
with an activation energy Ea � 98.1 6 0.5 meV. This
is in excellent agreement with the experimental data of
Cao et al. [10], shown in Fig. 2 as well, in the temperature
regime below 100 K, where Ea � 105 meV. Obviously,
with the inclusion of only the lowest bands in the present
calculation, we cannot account for the classical high tem-
perature region above 100 K, where Ea � 196 meV [10].
We can give a good qualitative description of the quantum
regime, though, where the numerical results above indicate
that the observed Arrhenius behavior for D corresponds to
activated quantum tunneling.
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FIG. 2. Temperature dependence of D between 80 and 140 K,
for g � 1, 5, 10. The Arrhenius behavior is evident. The experi-
mental data of Cao et al. [10] are shown for comparison. For
g � 10, a prefactor D0 of 2.71 3 109 Å2�s is obtained. The
experimental value of the prefactor D0 is 2.4 3 109 Å2�s [10].

The result for the temperature dependence can be under-
stood from the values of the bandwidths listed in Table I.
The bandwidths of the 
E0, E1� states are more than 1 or-
der of magnitude larger than for the lower bands (the delo-
calization was observed also in a recent experiment [15]).
Thus, diffusion proceeds mainly via a collision excitation
to the upper band, followed by tunneling to neighboring
sites and deexcitation to the lower bands again. It is the
Bose-Einstein factor n�v� �h̄v � D�, needed to ensure
detailed balance in thermal equilibrium [17], that leads
naturally to the activated Arrhenius behavior with an ac-
tivation energy close to the energy gap D. Although the
Arrhenius behavior of D does not depend on the ratio g, its
absolute magnitude is best fit to the experimental data by
choosing g � 10. This should be taken only as an effec-
tive ratio between tunneling and scattering, because, e.g.,
polaron effects [18,19] which lead to a broadening of the
levels and a reduction in the tunneling rate were left out in
the present calculation.

The MCWF methods gives insight into the quantum dy-
namics by allowing one to follow the dynamics of wave
packets in real space and time. In Fig. 1 we show two
typical trajectories, tracing the evolution of �r̂� for a wave
packet. The larger length scale for the trajectory at 110 K
reflects the larger value of the diffusion coefficient, which
is due to a higher excitation rate into the upper bands.
The trajectory at 70 K has points where the particle is
in the ground state for a longer time and, by comparison
to the trajectory at 110 K, it has less coherent propaga-
tion intervals in the upper band. The other point to note
is that there are coherent propagation regions with tun-
neling through several sites before a deexcitation. This
can be quantified by studying the tunneling length distri-
bution P�. We define the tunneling length � as the dis-
tance traveled by a wave packet in the upper band before
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it suffers a collision. It is found that asymptotically P� de-
creases exponentially with �, while it obeys a Poisson-like
distribution at small values of � �� # s�. This is similar to
the jump distribution in the classical regime [20]. Regard-
ing the dependence of D on g, we have done simulations
at T � 70 K and T � 110 K in the range 0.1 # g # 10
and found that D ~ g21 in this range. This inverse power
law dependence on g is similar to the dependence of D on
the microscopic friction h in the classical regime [21,22].
However, the influence of the geometrical factor on the
dependence of the jump distribution on g seems rather dif-
ferent from the classical case. The crossover of the depen-
dence on g or h from quantum to classical behavior is a
subject worthy of further investigations.

To summarize, we have demonstrated through a model
study of H diffusion on Ni(111) that the MCWF method
is a powerful tool in the study of quantum transport prob-
lems with many degrees of freedom. In addition, the real
space nature of the method allows one to extract interest-
ing information about the dynamics of wave functions, not
easily available with other means. As opposed to the small
polaron mechanism suggested earlier [10], our results sug-
gest that the low temperature diffusion behavior observed
in the work of Cao et al. for H�Ni(111) [10] has its origin
in the tunneling of the hydrogen adatom from the first vi-
brational excited state. We plan to apply the same MCWF
formalism to investigate other quantum diffusion systems,
such as H�Pt(111) [9] and H�Cu(001) [8], which show
qualitatively different behaviors from H�Ni(111) [10]. The
key is to start with a reliable adsorption potential through
a combination of first-principles calculation and empiri-
cal inputs.
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