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Field-Induced Metal-Insulator Transition in a Two-Dimensional Organic Superconductor
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The quasi-two-dimensional organic superconductor b00-�BEDT-TTF�2SF5CH2CF2SO3 �Tc � 4.4 K�
shows very strong Shubnikov–de Haas (SdH) oscillations which are superimposed on a highly anomalous
steady background magnetoresistance, Rb . Comparison with de Haas–van Alphen oscillations allows a
reliable estimate of Rb which is crucial for the correct extraction of the SdH signal. At low temperatures
and high magnetic fields insulating behavior evolves. The magnetoresistance data violate Kohler’s rule,
i.e., cannot be described within the framework of semiclassical transport theory, but converge onto a
universal curve appropriate for dynamical scaling at a metal-insulator transition.
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The electrical transport in metals can usually be de-
scribed by the coherent motion of electrons in Bloch states
with well-defined wave vectors. A common approach
to this problem is the Boltzmann transport theory which
works well for most metals and semiconductors. There
are, however, a number of cases where a more complex
transport mechanism is involved and where the simple ap-
proach fails [1,2]. Prominent examples are the cuprate
superconductors [3] and organic metals [4] which reveal
unusual normal-state properties. A central issue for these
layered materials is whether the electronic conduction can
be described by the coherent motion of Bloch electrons
with well-defined wave vectors or whether the interlayer
transport is caused by an incoherent diffusive motion of
the electrons between the layers.

With the assumption of a constant scattering time ts

for all charge carriers the semiclassical transport theory
predicts a universal temperature and field dependence
of the magnetoresistance which can be described as
R�B, T ��R�0, T � � f�B�R�0, T ��, where f�x� is a uni-
versal function. This is known as Kohler’s rule which
holds for many metals regardless of the Fermi-surface
topology [5]. Furthermore, for B parallel to the current, no
magnetoresistance is expected semiclassically. Deviations
from this behavior are known to occur for the interlayer
transport in some organic conductors [2,4]. This was
taken as an indication for incoherent transport. Other
evidence for the failure of conventional transport theory
is the very large low-temperature normal-state resistivity
(a few V cm) which would correspond to mean-free paths
much shorter than interatomic distances.

For the quasi-two-dimensional (2D) organic metals one
can assume that the interlayer transport is caused by uncor-
related tunneling events between the layers [1]. Thereby
the transport is incoherent because the electrons are scat-
tered many times within the layer before a tunneling event
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takes place. This may occur when the time it takes for an
electron to hop between the layers is much larger than ts,
i.e., h̄�tc ¿ ts, where tc is the interlayer hopping inte-
gral. In case the intralayer momentum is conserved dur-
ing the tunneling process and an interference between the
wave functions on adjacent layers is possible, McKenzie
and Moses [1] showed that certain metallic properties per-
sist even though no three-dimensional (3D) Fermi surface
would exist.

A potential candidate which might fit into the above
scenario is the 2D organic superconductor b00-�BEDT-
TTF�2SF5CH2CF2SO3 (Tc � 4.4 K) [6], where
BEDT-TTF stands for bisethylenedithio-tetrathiafulvalene.
The Fermi surface has been mapped out by de Haas–
van Alphen (dHvA) [7], Shubnikov–de Haas (SdH) [8],
and angular-dependent magnetoresistance oscillations
(AMROs) [9]. High-field dHvA measurements proved
the existence of an ideal 2D Fermi surface [10]. In line
with an incoherent transport mechanism [1] neither beats
in the magnetic quantum oscillations nor a peak in the
AMROs for field parallel to the layers was observed.
Another not-explained phenomenon is the peak in R�B�
at low fields and low temperatures [11]. At zero field,
the material seems to be close to an insulating phase,
since replacing CH2CF2 in the anion with CH2 yields an
insulator [12].

Although the measured dHvA oscillations of
b00-�BEDT-TTF�2SF5CH2CF2SO3 [10] could quanti-
tatively be understood by a 2D theory [13,14], the SdH
oscillations seemed to show strong deviations in the field
and temperature dependence from the usually expected
behavior [9,15]. Similar observations have been reported
for the SdH oscillations in other organic metals [16–19].
A principal problem inherent to transport data is the
correct extraction of the SdH signal, which is given by the
relative conductance oscillations Ds�s � s�sb 2 1,
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with sb the steady part of the relevant conductance of
the band which is responsible for the oscillations [20].
Only for Ds�s the framework of the Lifshitz-Kosevich
(LK) theory can be applied [13]. In general, a tensor
inversion from the measured longitudinal and transverse
resistances is necessary to obtain sb . In the present case,
however, the Hall component of the resistivity tensor
is negligible and for the used field configuration (B is
applied parallel to the interlayer-transport current) it
should be even exactly zero. Therefore, the SdH signal
is given by Ds�s � Rb�R 2 1, where the main task
is reduced to the reliable determination of Rb � 1�sb

out of the measured resistance R. In the following we
specify a method how this can be reasonably performed.
The extracted Rb reveals a field-induced insulating be-
havior, which cannot be described by the semiclassical
transport theory but can be scaled onto a universal curve.
The observed dynamical scaling suggests a scenario
of this metal-insulator transition as a quantum phase
transition.

The b00-�BEDT-TTF�2SF5CH2CF2SO3 single crystals
(labeled A to C hereafter) were grown by electrocrys-
tallization [21]. For the transport measurements 15 mm
gold-wire current leads were glued with graphite paste to
the samples. R was measured either with a lock-in ampli-
fier or by use of a four-point low-frequency ac-resistance
bridge with currents of a few mA. The anisotropic mag-
netization, M, was measured by means of a capacitance
cantilever torque magnetometer. Thereby, the contacted
crystal A was placed on top of the cantilever plate allow-
ing the simultaneous measurement of both SdH and dHvA
signals. The measurements were performed at the High
Magnetic Field Laboratories in Grenoble in fields up to
28 T and in Tallahassee up to 30 T.

In first high-field SdH measurements, Rb was estimated
by a polynomial fit to the measured R data [9]. Thereby
the oscillation amplitude of Ds�s reduced towards lower
temperatures for fields above about 20 T (see Fig. 3 in
[9]). This is contrary to the standard theories for magnetic
quantum oscillations [22]. In order to get a better estimate
for Rb , we simultaneously measured the SdH and dHvA
effects of a new and better-quality sample (A).

Figure 1 shows the torque signal, t (dotted line), and
the magnetoresistance (solid line) measured during falling
field which was tilted by about 0.4± in order to resolve
a nonzero dHvA signal. In line with previous results
[10] the dHvA signal shows an “inverse sawtooth” wave
form— after subtraction of a quadratic background mag-
netization —which can be explained quantitatively by a 2D
theory with fixed chemical potential [10,14]. The highly
asymmetric wave form becomes more apparent in the
strong anharmonicities of B2dM�dB, i.e., in the derivative
of the dHvA signal times B2 (inset in Fig. 1) which is ex-
pected to be directly proportional to the SdH signal Ds�s

[13,23]. With the assumption that the SdH signal should
be consistent with the dHvA effect and that the theory
for SdH oscillations [20] holds even for magnetoresistance
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FIG. 1. Field dependence of the simultaneously measured
torque signal (dotted line) and resistivity (solid line) of sample
A. The dashed line is the estimated background magnetoresis-
tance, Rb , resulting in the SdH signal Ds�s which agrees with
the derivative of the dHvA signal times B2 (inset).

oscillations as large as in the present case, the background
magnetoresistance Rb can be estimated. The SdH signal
Ds�s is proportional to the oscillating part of the density
of states at the Fermi level DN�eF��N0, where N0 is
the steady density of states. Relevant for the magnetic
quantum oscillations in the present case is a single 2D
holelike band, which coexists together with open 1D
electronlike bands [8]. A priori, both bands are expected
to contribute to the electronic transport. If, therefore, the
conductivities originating from each band exhibit strong
field and temperature dependences, one has to disentangle
the different contributions from the measured R. For
the present case, this means to extract the background
resistance for the 2D band. With Rb as shown in Fig. 1
(dashed line), a SdH signal Ds�s is obtained which
reasonably well agrees with the thermodynamic quantity
B2dM�dB (see inset). For this sample and sample B (see
below) a simple polynomial fit through the data would
yield a smaller Rb and, consequently, a too low Ds�s

at higher fields.
The estimated Rb for sample A is well inside the range

of the resistance-oscillation amplitude. This is different for
samples which reveal smaller-amplitude oscillations, i.e.,
which are of less-high quality. Rb for sample B has to be
set at about the maxima of the measured R in order to re-
produce in Ds�s approximately the field dependence of
B2dM�dB (Fig. 2). For this sample R was measured in
Tallahassee and subsequently t was measured in Grenoble
(sample 2 in Ref. [10]), which explains the slight phase
shift. It is obvious that without the knowledge of the dHvA
signal the chosen Rb seems to be rather arbitrary. For the
usual polynomial estimate of Rb , the B and T dependence
of the resulting SdH signal would contradict the LK theory
(see Refs. [9,15]). Although there remains an uncertainty
in Rb especially towards higher B, the comparison of the
magnetic quantum oscillations extracted from thermody-
namic and transport data indeed allows a reliable estimate
of the magnetoresistance.
509



VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001
5 10 15 20 25 30
B (T)

-2

-1

0

1

2
S

dH
 s

ig
na

l

0

1000

2000

R
 (

Ω
)

B2dM/dB

              T (K)
0.55

Rb

∆σ/σ

0.82
1.27

β"-(BEDT-TTF) 2SF5CH2CF2SO3

sample B

FIG. 2. Magnetoresistance of sample B for different tempera-
tures. The dashed line shows Rb for T � 0.55 K resulting in the
SdH signal Ds�s (solid line in the upper part) which compares
well with the derivative of the independently measured dHvA
signal times B2.

Finally, Fig. 3 shows the magnetoresistance of a high-
quality sample (C) with very large oscillation amplitudes
in R (3 times larger than for sample B). Here, a polyno-
mial fit for Rb results in a reasonable field and temperature
dependence of Ds�s. The inset in Fig. 3 shows the field
dependence of Rb for different temperatures. While for
low fields Rb decreases with decreasing T in a metalliclike
fashion, insulating behavior at high fields and low tem-
peratures with dR�dT , 0 is observed. This suggests
a metal-insulator transition as T ! 0. At high fields,
Rb grows approximately exponentially with field. This
field-induced metal-insulator transition, recognized quali-
tatively already earlier [15], is a unique feature of the
present organic metal.

It is important to note that the magnetoresistance cannot
be explained by a conventional semiclassical theory. For
charge carriers with a constant ts on the whole Fermi sur-
face, the Boltzmann equation predicts that Kohler’s rule
is obeyed. However, a Kohler plot of Rb�R�0� vs B�R�0�
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FIG. 3. Magnetoresistance of sample C for different tempera-
tures. The dotted line shows Rb at T � 0.44 K which is also
shown in a semilogarithmic scale in the inset together with Rb
for other temperatures.
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for different temperatures (inset in Fig. 4), where R�0� for
B � 0 is extrapolated from Rb at fields above the super-
conducting phase transition, shows the failure of the semi-
classical theory. This leads to the question whether the
concept of Bloch states for interlayer transport still has a
meaning for the present material [2] and how the observed
field-induced metal-insulator transition and the interlayer
transport in general can be understood.

One explanation for an anomalously large magnetore-
sistance is based on the existence of a periodic potential
in each layer [24]. A magnetic field applied perpendicular
to the layers then converts the in-plane periodic potential
into a periodic potential along the field direction. When
the period is incommensurate with the layer spacing and
when this potential is stronger than the interlayer hopping
rate the electron wave function would become localized.
The strength of the potential increases with field resulting
in an increasing magnetoresistance [24]. For the present
material, there is however no indication for the existence
of an in-plane periodic potential, caused, e.g., by a density
wave. Therefore, it is unclear whether this kind of inco-
herent transport is present here.

The metal-insulator transition has been intensively stud-
ied in a number of other materials. For these, usually
a universal dynamic scaling relation can be found which
describes the resistivity as a function of the tuning parame-
ter and temperature [25]. Thereby, the tuning parame-
ter controls the quantum phase transition, i.e., might be
the charge-carrier concentration, pressure, disorder, or the
magnetic field. A scaling variable which has been found
to hold well for the magnetic-field-tuned superconductor-
insulator transition of 2D films is �B 2 B0��Tk , where B0
is the critical field for the metal-insulator transition and
k is a composed critical exponent [26–28]. A first at-
tempt to scale Rb (inset in Fig. 3) directly as a function of
�B 2 B0��Tk did not yield a satisfactory result. However,
the data do collapse onto one single curve when normaliz-
ing Rb by its value at B � 0 (Fig. 4). Thereby, a critical
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FIG. 4. Scaling plot of the data shown in the inset in Fig. 3.
For B0 � 3.5 T and an exponent k � 0.65 the data collapse on
a single curve. A Kohler plot of the same data (inset) reveals
the significant deviation from the semiclassical theory.
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field of B0 � 3.5 T and a critical exponent of k � 0.65
was chosen. R�0� lies between 27.5 V for T � 0.44 K
and 54 V for T � 4.2 K. For sample B an equally good
scaling was obtained with B0 � 3.5 T and k � 0.7. The
slight deviations of the different curves towards higher
fields may originate from the uncertainty in Rb . The scal-
ing works very well over about two decades in Rb and
about one decade in B and T . For nonzero temperatures
above B0 a finite conductivity should be possible only
due to hopping processes. Ideally, for T ! 0 the mag-
netoresistance for large enough B should diverge. How-
ever, towards lower temperatures the scaling fails and Rb

rather seems to saturate [15,29]. A similar deviation from
scaling at low T observed in superconducting 2D films
was ascribed to the coupling of the system to a dissi-
pative bath [27].

The field B0 separates the insulating from the metallic
behavior. Usually, the data for B , B0 should scale onto a
second branch when plotting Rb�R�0� vs j�B 2 B0��Tkj.
In the present case, where B0 � 3.5 T is approximately
equal to the upper critical field for superconductivity [6],
the resistivity below B0 is strongly influenced by the vor-
tex dynamics in the superconducting state. Therefore, a
reliable scaling for B , B0 is not possible. For the known
quantum phase transitions the exponent k can be written
as 1�zn. For the field-tuned metal-insulator transition of
strongly disordered films a dynamical critical exponent
z � 1 and n $ 1 for the coherence-length exponent was
predicted and found experimentally (n � 1.3) [26,27].
However, recent results deviate from that prediction and
suggest a more complex scenario [28]. Although the
exponent k � 0.65�5� found here is close to the result
of [26,27], the investigated organic system is very clean
and the metal-insulator transition will probably fall in a
different universality class.

In conclusion, we have shown that for b00-
�BEDT-TTF�2SF5CH2CF2SO3 the apparent deviation of
the SdH oscillations from conventional behavior depends
on the sample quality and relies strongly on the correct
determination of the background magnetoresistance Rb ,
which can be achieved by a direct comparison with
dHvA data. Rb exhibits a field-induced metal-insulator
transition which semiclassical theory fails to describe.
The magnetoresistance data for different temperatures
can reasonably well be scaled onto a universal curve. It
remains to be checked whether the unusual behavior of
the SdH oscillations observed in other organic metals
[16–18] might be understood by a similar scenario.
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