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Error Field Amplification and Rotation Damping in Tokamak Plasmas
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Toroidal rotation is normally very weakly damped in plasmas that are magnetically confined in the
nominally toroidally symmetric tokamak. However, a strong damping of toroidal rotation is observed
as such plasmas approach marginal stability for perturbations that produce a kinklike distortion of the
plasma. It is shown that the damping of toroidal rotation by very small departures of the magnetic
field from toroidal symmetry is greatly enhanced as marginal stability is approached. The response of a
plasma to perturbations is studied using a set of electrical circuit elements, which provide an equation
for the rotational damping that requires minimal information about the plasma.
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I. Introduction.—Toroidal rotation is weakly damped
in plasmas that are confined by a magnetic field that has
toroidal symmetry. Heating by the injection of beams of
high-energy neutral particles can drive such plasmas to
high velocities of toroidal rotation. Such phenomena are
observed on the DIII-D tokamak, but the toroidal rotation
is observed to be heavily damped as the plasma approaches
stability limits for perturbations that produce a kinklike
distortion of the plasma [1]. Here we show how very
small toroidally asymmetric perturbations produced by the
magnetic field coils (error fields) can be amplified by a
plasma approaching marginal stability and produce a rapid
damping of the toroidal rotation.

Angular momentum is transferred from the plasma to
the coils that produce a field error by the off-diagonal
part of the Maxwell stress tensor. Tokamak plasmas are
essentially charge neutral, so the Maxwell stress tensor
can be defined by �= ?

$
T � �j 3 �B. The relevant off-

diagonal part of the stress tensor is Tij � bibj�m0, with
bi a vector component of the deviation of the magnetic
field from toroidal symmetry. The transfer of the toroidal
torque from the plasma to the coils is given by the in-
tegral tw � �1�m0�

H
bw

�b ? d �a over any toroidally sym-
metric surface in the vacuum region between the plasma
and the coils. Such surfaces can be defined by �xs�u, w�,
with u a poloidal and w a toroidal angle. The toroidal
component of the perturbation is bw � �b ? ≠ �xs�≠w. The
magnetic perturbation �b is the sum of two fields: one due
to currents in the plasma and the other due to currents
in the coils producing the error. The torque transfer is a
convolution integral of these two fields. A magnetic per-
turbation exerts a torque on a rotating plasma by many
mechanisms. For example, the transfer of rotational en-
ergy to waves produces a torque on resonant surfaces. On
these surfaces, the rotation frequency satisfies v � kkCw ,
with kk a wave number of the magnetic perturbation paral-
lel to the unperturbed magnetic field, and Cw is the phase
velocity of a wave (sound or shear Alfvén) along the field.
The strength of the torque can be described by an empiri-
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cally determined, dimensionless parameter a, which is de-
fined by Eq. (4).

As a plasma approaches marginal stability for a kink-
like perturbation, it becomes easier and easier to distort.
At marginal stability, the amplitude of the plasma distor-
tion due to a given external perturbation is inversely pro-
portional to the torque parameter a as is the torque on
plasma. This counterintuitive effect of a smaller torque
parameter giving a larger torque is analogous to the fresh-
man physics result that a light bulb with low resistance
dissipates more energy than one with high resistance. We
assume the plasma distortions are sufficiently small that
the perturbations can be approximated by linear theory.

The interaction of an evolving plasma with an external
magnetic perturbation involves three elements: (i) the ex-
ternal magnetic perturbation, (ii) the plasma, and (iii) the
conducting structures surrounding the plasma. The con-
ducting structures, such as chamber walls, are important
if the time scale for plasma evolution is comparable to
the time scale for currents to decay in these structures.
Each of these elements can be represented by electrical
circuit equations [2–4]. Sections �II� and �III� review
the derivation of these circuit equations. Section �IV � ap-
plies these circuit equations to the amplification of an error
field by a plasma approaching marginal stability and finds
the enhanced damping of toroidal rotation produced by the
error field.

II. Matrix circuit equations.—Currents in conducting
structures, such as the chamber walls surrounding a plas-
ma, can be calculated using a matrix circuit equation [2,4],

$
L ?

d �I
dt

1
$
R ? �I � �V . (1)

This equation is derived by multiplying �E � 2≠ �A�≠t 2
�=f by vector expansion functions �wi� �x� with �= ? �wi � 0
and �j� �x, t� �

P
Ii�t� �wi� �x�. An integration over all of the

space using

�A� �x, t� �
m0

4p

Z �j� �y, t�
j �x 2 �yj

d3y
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and �E � h �j gives Eq. (1) with the inductance matrix
defined by

Lij �
m0

4p

I �w1� �x� ? �wj� �y�
j �x 2 �yj

d3x d3y ,

the resistance matrix defined by Rij �
R

h �wi� �x� ?
�wj� �x� d3x, and the voltage by Vi � 2

H
f �wi ? d �a. The

voltage is zero unless an expansion function represents a
circuit that is connected to a power supply.

The conducting structures surrounding the plasma are
often thin compared to the wavelength of the perturba-
tions. When this is true, the current in the structure can
be approximated by a surface current, which means

�wi� �x� � �= 3 �fi�u, w�d��x 2 �xs�u, w��n̂� ,

with �xs�u, w� defining the surface and n̂ the surface nor-
mal. Another form for this equation may be easier to
understand. In �r , u, w� coordinates in which �x�r �
rs, u, w� � �xs�u, w�, one has d��x 2 �xs�n̂ � d�r 2

rs� �=r. The quantity k�u, w, t� �
P
Ii�t�fi�u, w� is

known as the current potential of the surface current.
III. Plasma circuit elements.—The circuit elements that

represent the plasma are defined on a control surface,
which is essentially the unperturbed, toroidally symmet-
ric plasma surface, but technically lies infinitesimally out-
side of the plasma [3,4]. Any complete set of functions,
fi�u, w�, integrated over that surface defines a column
matrix that is called the perturbed plasma flux, Fi �H
fi�u, w� �B ? n̂ da. Magnetically confined plasmas satisfy

�=p � �j 3 �B, with p the plasma pressure, which implies
�B ? n̂ is zero in the absence of a perturbation. Outside of
the plasma, the magnetic field due to the perturbed plasma
current is equivalent to the field that would be produced by
a unique surface current on the plasma surface. The col-
umn matrix �Ip is the set of expansion coefficients for the
current potential for this surface current expanded in the
functions fi�u, w�. The plasma flux can then be written as
�F �

$
Lp ? �Ip 1 �Fx , with

$
L p inductance of plasma sur-

face and �Fx the flux due to currents external to plasma.
In toroidally symmetric plasmas, the expansion func-

tions for perturbations can be written as fi�u, w� �
Fi�u�eiNw , with N the toroidal mode number. The
complex notation allows a simple representation of the
toroidal phase shifts induced by the torque exerted by a
rotating plasma on externally produced perturbations.

Since the perturbations to the plasma are assumed to
be in a linear regime, the surface current equivalent of the
perturbed plasma current has the form Ip�t� �

R
r
$
g�t, t� ?

�Fx�t 2 t� dt. If the plasma responds rapidly, one can
approximate the response as instantaneous, �Ip � r

$
? �Fx .

When the response is instantaneous, the energy and the
torque that would be needed to drive an arbitrary surface
current �J in a conductor on the plasma surface determine
5060
[3,4] the reluctance r
$

. For such a current, �Fx �
$
Lp ? �J.

The power required to drive �J is

d�dW�
dt

� 2
Z

�j ? �E d3x

�
1
4
d
dt

� �Jy ? �Fy 1 �Fy ? �J� ,

with �Jy the Hermitian conjugate of �J, and the torque
required is

tw � 2
Z

� �j 3 �B� ?
≠ �x
≠w
d3x

� i
N
2

� �Jy ? �F 2 �Fy ? �J� .

These two relations imply the reluctance matrix is

r
$

�
$
L21
p ? �$L 2

$
Lp� ?

$
L21
p , (2)

with the matrix L
$

defined by

�Fy ?
$
L21 ? �F � 2dW 1

i
N

tw . (3)

When the plasma can be approximated as ideal (no dissipa-
tion), the quantity dW �

1
2

�Fy ?
$
W ? �F can be calculated

in diagonal form using a stability code such as [5] DCON.
A stability code gives (i) the shape of each eigenvector, or
mode, of

$
W , which is an fi�u, w� on the plasma surface,

and (ii) the eigenvalue Wi of
$
W , which is twice the energy

of the mode. Equation (3) generalizes the well-known Her-
mitian

$
W matrix of dW stability theory to a general inter-

action matrix
$
L21, which has both Hermitian (the energy)

and anti-Hermitian (the toroidal torque) parts.
IV. Single mode model of field errors.—The general cir-

cuit equations that have been derived can be applied to the
interaction of an evolving plasma with an externally pro-
duced field error. In the simplest approximation, one re-
tains only the least stable plasma mode, which is called the
single mode model.

In the single mode model, one needs the shape of the
least stable plasma mode on the plasma surface fu�u, w�,
the required energy to drive the mode, and the required
torque. The energy of the single mode can be parametrized
by 2s, the energy required to drive the mode divided by
the energy that would be required to drive the same normal
field perturbation on the plasma surface without the plasma
being present. The minus sign is inserted so s is positive
for unstable perturbations. The torque between the mode
and the plasma can be parametrized by the dimensionless
coefficient a, which is torque divided by N times the en-
ergy required to drive the same normal field perturbation
on the plasma surface without the plasma being present.
The toroidal torque is

tw � NajFj2�Lp . (4)

The coefficient a can be determined empirically. Dissipa-
tion coefficients, such as a, usually differ in plasmas from
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their simple theoretical estimates, so an empirical value for
a may be preferable to such an estimate. The parameter
s can be found using the DCON code [5]. Using the defi-
nitions of s and a, Eqs. (2) and (3) imply that the plasma
reluctance is

r � 2

µ
1

s 2 ia
1 1

∂
1
Lp

.

Without rotation, a � 0, the reluctance has a 1�s singu-
larity, which represents the ease with which the plasma can
be distorted as it approaches marginal stability, s � 0. The
single mode model is generally an accurate approximation
if jsj ø 1 only for the least stable mode and if a ø 1,
which is required for the validity of the ideal-plasma ap-
proximation made in the DCON code.

The magnetic flux through the wall in the single mode
of the model is Fw � LwIw 1 MwpIp 1 F

�w�
e , while the

perturbed plasma current is Ip � rFx or

Ip � 2
1
Lp

µ
1

s 2 ia
1 1

∂
�MpwIw 1 F�p�

e � .

The relation between the externally produced error field on
plasma and on the wall is F

�p�
e � �Mpw�Lw�F�w�

e . The in-
teraction of the wall and the plasma is given by a coupling
coefficient c � MwpMpw��LpLw�. In a simple cylindrical
model, this coefficient would be given by the ratio of the
plasma to the wall radius a�b and the poloidal mode num-
ber m with c � �a�b�2m. A typical coupling coefficient
for the least stable mode in DIII-D is c 	 0.2.

The flux on the wall can be written in terms of the current
in the wall and the externally driven error field as

Fw � �1 2 c�
µ
1 2

c
12c

s 2 ia

∂
�LwIw 1 F�w�

e � .

The circuit equation dFw�dt � 2RwIw implies, with
gw � Rw�Lw , that

dFw

dt
� 2�yg 1 ivr�Fw 1 gwF�w�

e .

The growth rate of the perturbation, which is called the
resistive wall mode growth rate, is

yg �
s� c

12c 2 s� 2 a2

� c
12c 2 s�2 1 a2

gw

1 2 c
,

and the equilibrium rotation rate of the resistive wall
mode is

vr �
c

12c a

� c
12c 2 s�2 1 a2

gw

1 2 c
.

The perturbation on the plasma is proportional to the per-
turbation on the wall,

F �
1

1 2 c
1

c
12c 2 �s 2 ia�

Mpw
Lw

Fw .
FIG. 1. Enhancement of the effective toroidal rotation damp-
ing coefficient, aeff, from its value in the absence of plasma
amplification effects, a, near marginal stability for a plasma
kink mode, s � 20.05.

The equations that we have derived can be integrated for
a plasma becoming increasingly less stable, which means
s is negative but approaching zero. If the plasma evolu-
tion is slow compared to 1�yg, the results are accurately
approximated by the steady-state answers. In steady state,
the perturbation on the plasma is F � 2F

�p�
e ��s 2 ia�

and the torque is tw � Naeff�s�jF
�p�
e j2�Lp with the ef-

fective torque coefficient aeff � a��s2 1 a2�.
When the stability parameter is small but negative,

the rate of momentum damping is greatly enhanced over
its nominal value, aeff � a. Figure 1, which plots aeff
versus a for s � 20.05, illustrates this point. At exact
marginal stability, s � 0, the amplitude of the plasma
distortion is proportional to 1�a, so the torque, which
is proportional to the distortion squared times a, is also
proportional to 1�a.
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