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Phase Mixing and Island Saturation in Hamiltonian Reconnection
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The nonlinear evolution of a Hamiltonian magnetic field line reconnection in a two-dimensional fluid
plasma leads to a macroscopic equilibrium with a finite-size island and fine-scale spatial structures. The
latter arise from the phase mixing of the Lagrangian invariant fields. This equilibrium is the analog of
the Bernstein-Greene-Kruskal equilibrium solution for electrostatic Langmuir waves.
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Magnetic field line reconnection in high temperature
plasmas is one of the most fertile problems in plasma
physics due to its relevance to astrophysical and labora-
tory plasmas and to its theoretical implications. One of its
most important features is the interplay between the ener-
getic and topological aspects that characterize its evolution:
a local relaxation of the topological magnetic structure is
accompanied by a local, fast release of magnetic energy.
The topological features of magnetic reconnection are most
evident in the dissipationless (Hamiltonian) regime. In this
regime, the topology of the magnetic field is broken by the
effect of electron inertia, or by electron kinetic effects not
considered in this paper, but the topology of generalized
fields is preserved, as discussed in Ref. [1]. While these
topological constraints have been shown not to limit the
evolution of magnetic reconnection, and in particular the
value of the reconnected magnetic flux, their effect on
the asymptotic state of the magnetic configuration and on
the eventual formation of a “macroscopic” equilibrium has
not been fully investigated. In particular the point has been
raised that, being collisionless equations reversible, colli-
sionless reconnection may “bounce back,” i.e., that, after
an initial phase where flux is reconnected, a phase of “un-
reconnection” may follow, especially if the plasma flow is
to decrease as a final steady state is approached.

Nonlinear magnetic reconnection processes due to in-
stabilities have been studied in the collisionless limit in
Refs. [1–3]. In Refs. [1,2] a two-dimensional (2D) con-
figuration with double periodic boundary conditions was
adopted. With these boundary conditions, an intrinsic limi-
tation is the “cross talking” between island chains when
they reach a width comparable to the equilibrium scale
length. In this Letter, we remove the double periodic
boundary conditions. We adopt a Harris-type equilibrium
configuration with a strong superimposed homogeneous
magnetic field perpendicular to the reconnection plane.
With this configuration, the collisionless evolution of a
single coherent magnetic island can be followed until its
width saturates at a macroscopic amplitude and its satura-
tion mechanism can be addressed. We find that the satu-
ration mechanism is associated with the energy transport
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to small scale structures in the fluid vorticity and in the
current density inside the island. These structures are su-
perimposed on the macroscopic equilibrium and arise from
the phase mixing, inside the island, of the Lagrangian in-
variants that express the conservation of the topology of the
generalized fields. In this way, a new macroscopic equilib-
rium can be accessed by a Hamiltonian plasma in spite of
energy conservation.

We consider a 2D configuration with a strong magnetic
field in the ignorable z direction, B � B0ez 1 =c 3 ez ,
where B0 is constant and c�x, y, t� is the magnetic flux
function. The governing equations, normalized on the
Alfvén time tA and on the equilibrium scale length Leq,
can be cast in the Lagrangian invariant form [4]

≠G6

≠t
1 �f6, G6� � 0 , (1)

with Hamiltonian H � 2
R

d2x �f1G1 1 f2G2��2.
Here, �A, B� � ez ? =A 3 =B, and the Lagrangian in-
variants are

G6 � c 2 d2
e=2c 6 de�s=

2w . (2)
These conserved fields are advected along the stream
lines of

f6 � w 6 ��s�de�c . (3)
The magnetic flux c and the plasma stream function w

obey the equations
c 2 d2

e=2c � �G1 1 G2��2 , (4)

de�s=
2w � �G1 2 G2��2 , (5)

with de the electron collisionless skin depth and �s the
so-called ion sound gyro radius. The more standard form
of the reduced two-fluid equations can be found, e.g., in
Refs. [1,4–6]. In particular, J � 2=2c is the current den-
sity, U � =2w is the plasma fluid vorticity along z, and the
generalized Ohm’s law is

≠F
≠t

1 �w, F� � h�J 2 J0� 1 �2
s �U, c� , (6)

with F � c 2 d2
e=2c the generalized magnetic flux and

h the electrical resistivity, which is set to zero in the
Hamiltonian limit.
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The initial equilibrium Beq � B0ez 1 Byeq�x�ey ,
where Byeq�x� � tanh�x�, is unstable to tearing perturba-
tions periodic in y over the distance Ly when 1 , pLy .

In the x direction we impose the perturbed fields dc

and dw to vanish at infinity. The model is solved numeri-
cally on a limited integration domain along x such that the
boundary fluxes are negligible, using a nonuniform mesh
with an increasing density of points in the central region.
A suitable filtering [7] of the small spatial scales (well be-
low the electron skin depth) has been included, which is
capable of ensuring numerical stability, while not altering
the requested conservation properties significantly. This
method is more convenient than artificial viscosity or hy-
perviscosity, which require smaller values of the time step
for numerical stability and, in the time asymptotic limit,
also affect the larger scales. The model preserves parity,
so we choose initial perturbations such that c�2x� � c�x�
and w�2x� � 2w�x�. These relations imply H � 0 and
G1�2x, y� � G2�x, y�, f1�2x, y� � 2f2�x,y�.

As we anticipated, the functions G6 develop fine-scale
oscillations due to phase mixing. This process can be con-
veniently interpreted in terms of a formal analogy with the
standard Vlasov-Poisson problem for electrostatic Lang-
muir waves [8]. The set in Eq. (1) has the form of two
coupled 1D Vlasov equations, with x and y playing the
roles of the coordinate and of the conjugate momentum for
the “distribution functions” G6 of two “particle” species
with opposite charges in the Poisson-type equation for w,
Eq. (5), and equal charges in the Yukawa-type equation for
c , Eq. (4). The stream functions f6 play the role of the
single particle Hamiltonians. Thus, similar to Bernstein-
Greene-Kruskal (BGK) [9] solutions, the stationary solu-
tions of Eq. (1) can be written in the form G6 � G�6f6�.
Note that there is a single function G because of the sym-
metry condition. However, the present problem and the
standard Vlasov-Poisson problem are not formally identi-
cal. In Poisson’s equation, the source term is the electron
density, which is the velocity space integral of the distribu-
tion function and as such does not exhibit fine-scale oscilla-
tions. In our problem, the source terms for Eqs. (4) and (5)
are the distribution functions G6 themselves. However, the
field c and w solutions of these equations can be expressed
in terms of integrals of G6. Thus, the fine-scale structure
of the G6 does not show up in c and w. A similar situ-
ation arises also in the case of the diocotron instability in
magnetized, non-neutral plasmas [10]. There, the electron
density, which is the source term in Poisson’s equation, is
a Lagrangian invariant and thus exhibits phase mixing.

Now, we show the results of the numerical integration of
Eq. (1) for Ly � 4p, which implies that the standard pa-
rameter D0 related to the logarithmic derivative of the linear
eigenfunction for the perturbed magnetic flux outside the
reconnection layer has a value D0 � 15.7. Furthermore,
we choose an integration domain that extends from 2Lx

to Lx with Lx � 12.35 and de � �s � 0.2. For compari-
son, we also consider a case with de � 0 and �s � 0.1 in
which resistivity replaces inertia in the generalized Ohm’s
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law and take �h�1�3 � 0.2. With these parameters, the
corresponding regime is the “large D0 limit” [2], where the
nonlinear reconnection process is fast. In the collisionless
regime, the initial nonlinear growth is superexponential in
time, as already found in Refs. [1–3] and shown here in
Fig. 1. The magnetic island reaches a macroscopic width
over a time scale of the order of the inverse linear growth
rate, gL. In the collisional case the growth rate is lower
but the saturation level is comparable for the two cases.

The numerical approach is limited by the necessity of
a finite-size grid, which we control by the use of filters.
As a consequence, the filamentary structures generated by
the phase mixing are smoothed out as soon as they reach
the grid scale length. In order to check that such numeri-
cal “coarse graining” on the grid size does not influence
the large scale structures, as well as the characteristic time
of the process, we have performed a number of simula-
tions with varying spatial grid sizes which show that the
filaments just persist for a longer time at higher resolution
without significantly changing the larger scale dynamics.
When the action of the filter starts to influence the energy
balance, the simulation is terminated.

We see in Fig. 2a that the magnetic energy
R

d2x j=cj2

is transformed mainly into ion (plasma) kinetic en-
ergy,

R
d2x j=wj2, into electron parallel kinetic energy,R

d2x d2
eJ2, and into electron internal energy,

R
d2x �2

s U2.
The total energy E is defined as

E �
Z

d2x �j=cj2 1 d2
eJ2 1 �2

s U2 1 j=wj2��2 , (7)

where the difference between E and the Hamiltonian H
is a (conserved) quadratic functional of the Lagrangian
invariants G6 [4].

In the initial equilibrium configuration, the contour lev-
els of the Lagrangian invariants G6 are simply y � const
lines. As the instability evolves, these lines are transported
along the characteristic curves, x6�t�, determined by

d �x6�t��dt � �y6� �x6, t�, with �y6 � �ez 3 =f6 . (8)

FIG. 1. Growth rate: ln�dcX� versus the normalized time tgL
for the collisionless and the resistive case, with gL � 0.028 and
gL � 0.025, respectively.
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FIG. 2. (a) The difference between each term of energy, as
defined in Eq. (7), and the correspondent value at t � 0, divided
by the total energy E �0�, is plotted versus the normalized time
t � gL. (b) Plot of

R
dx dy ����f6, G6����2�

R
dx dy ��f6,G6��2

versus time, where ��· · ·�� denotes spatial averaging over 2de, for
a case with de � 0.2, �S � de�2. All the integrals are extended
over the entire slab.

Therefore, two vortical patterns (one the mirror image
of the other) develop inside the island location. The advec-
tion of G6 along these vortices leads to the phase mixing
of the two Lagrangian invariants. An equivalent view is
that the single particle Hamiltonians f6 develop two sepa-
ratrices and that fluid elements advected by the velocity
fields �y6 become trapped inside these separatrices in the
x, y phase space as shown in Fig. 3. The phase mixing
of G6 is also responsible for the formation of the typi-
cal “quadrupolar” fine spatial structures, with odd sym-
metry for the plasma vorticity U � �G1 2 G2���2rsde�
and even symmetry for the generalized flux function F �
�G1 1 G2��2. This quadrupolar structure is also clearly
visible in the contour plot of the stream function w shown
in Fig. 4a in comparison with the collisional case (Fig. 4b).
We see that, in the collisionless case, convection cells ap-
pear inside the magnetic island, around the O points of the
magnetic flux. Here we choose a time in which the mag-
netic island has an amplitude of order 3.7. As the island
grows, new cells appear. At saturation the velocity field is
completely localized inside the magnetic island and tends
to vanish outside. By contrast, in the resistive case, the
velocity field tends to be more widely distributed.

A new characteristic dynamical time related to the eddy
turn-over time inside the island becomes of interest. This
time scale becomes shorter as the instability grows and can
be estimated to be inversely proportional to the square root
of the amplitude of the perturbed fields. When the turning
time becomes of the order of the nonlinear island growth
time, energy is removed effectively from the large spatial
scales leading to the island growth saturation.

In order to show that this process can allow the plasma
to access a new “macroscopic” stationary state, we proceed
along lines that are similar to those followed in Ref. [11]
for the BGK solutions in the case of the nonlinear Lan-
dau damping of Langmuir waves. We separate the La-
grangian invariants into coarse-grained and phase-mixed
parts according to G6 � Ḡ6 1 G̃6. Then, the numerical
FIG. 3. The contour levels of the single particle Hamiltonian w2 at different simulation times are plotted in the first row. The dotted
lines are the separatrices. The contour levels of the Lagrangian invariant G2 are drawn in the second row (the dotted contour is the
island separatrix). Note that the scale in the x direction changes during time. All the plots refer to a simulation with de � �s � 0.2.
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FIG. 4. Stream function w for the
collisionless and resistive case, at a
time such that the amplitude of the
magnetic island (dotted contour) is
comparable and of order 3.7 for case
(a) and 3.3 for case (b). (a) collision-
less case with de � �s � 0.2; (b) re-
sistive case with de � 0.2, �s � 0.1.
solutions of Eqs. (4) and (5) show that, when the turning
time is shorter than the growth time, w 	 w̄ and c 	 c̄ ,
since the contributions of the phase-mixed parts, G̃6, are
averaged out. On the other hand, these parts continue to
contribute to total energy conservation through the d2

eJ2

and the �2
s U2 terms in Eq. (7). This makes it possible for

the coarse-grained quantities to reach a macroscopic equi-
librium given by �w̄6, Ḡ6� ! 0 without violating energy
conservation, consistent with the plot in Fig. 2b, which
shows that the integral of the squared coarse-grained Pois-
son brackets in Eq. (1) decays in time (the nonsquared
quantity gives trivially a zero integral). Together with the
symmetry conditions, �w̄6, Ḡ6� ! 0 gives

c̄ 2 d2
e=2c̄ 6 de�s=

2w̄ � G�c̄ 6 �de��s�w̄� . (9)

We assume, consistently with the numerical results, that
c̄ is the dominant term on the left-hand side of Eq. (9).
In particular, at saturation, =2c̄ 
 c and w̄ 
 d2

ec̄ [we
assume for simplicity that �s�de 	 O�1�]. Then, the
arbitrary function G must be of the form G�A� 	 A 1

d2
eF �A�, where F �A� � O�A� and d2

e plays the role of
the smallness parameter. Thus, by expanding Eq. (9), we
obtain

2d2
e=2c̄ 6 de�s=

2w̄ � 6�de��s�w̄ 1 d2
eF �c̄� . (10)

This equation contains odd and even terms. Balancing
the even terms gives J̄ � F �c̄�. The odd terms imply
�2

s =2w̄ 
 w̄ and therefore max�Ū� 
 max�J̄�, which is
also confirmed by the numerical results. The functional
dependence of J̄ on c̄ is not determined by Eq. (9) and
should be obtained from the nonlinear evolution of the
instability. It is remarkable, however, that the function F
need not contain either de or �s, which may explain why
the saturated island width is found to be comparable in both
collisionless and resistive regimes (cf. Fig. 1).
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We have investigated the nonlinear evolution of fast
magnetic reconnection in the collisionless regime, all the
way to saturation, and the establishment of a new equilib-
rium with a macroscopic magnetic island. This new equi-
librium is accessed in spite of energy conservation. Part of
the released magnetic energy is transferred to small scale
structures for the conserved fields, which are averaged out
in the expression for the magnetic flux function. This result
uncovers the underlying unity between different physical
phenomena, such as nonlinear Landau damping of Lang-
muir waves [11] and dissipationless vortex interaction [12]
in 2D fluids on one side and Hamiltonian magnetic field
line reconnection on the other.
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