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Exact Soliton Solutions, Shape Changing Collisions, and Partially Coherent Solitons
in Coupled Nonlinear Schrödinger Equations
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We present the exact bright one-soliton and two-soliton solutions of the integrable three coupled non-
linear Schrödinger equations (3-CNLS) by using the Hirota method, and then obtain them for the general
N-coupled nonlinear Schrödinger equations (N-CNLS). It is pointed out that the underlying solitons
undergo inelastic (shape changing) collisions due to intensity redistribution among the modes. We also
analyze the various possibilities and conditions for such collisions to occur. Further, we report the sig-
nificant fact that the various partially coherent solitons discussed in the literature are special cases of the
higher order bright soliton solutions of the N-CNLS equations.
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In recent years the concept of soliton has been receiv-
ing considerable attention in optical communications since
soliton is capable of propagating over long distances with-
out change of shape and with negligible attenuation [1–3].
It has been found that soliton propagation through optical
fiber arrays is governed by a set of equations related to the
CNLS equations [1,2],
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2qj � 0, j � 1, 2, . . . , N ,

(1)

where qj is the envelope in the jth core, z and t represent
the normalized distance along the fiber and the retarded
time, respectively. Here 2m gives the strength of the non-
linearity. Equation (1) reduces to the standard envelope
soliton possessing integrable nonlinear Schrödinger equa-
tion for N � 1. For N � 2, the above Eq. (1) governs
the integrable Manakov system [4] and recently for this
case the exact two-soliton solution has been obtained and
novel shape changing inelastic collision property has been
brought out [5]. However, the results are scarce for N $ 3,
even though the underlying systems are of considerable
physical interest. For example, in addition to optical com-
munication, in the context of biophysics the case N � 3
can be used to study the launching and propagation of soli-
tons along the three spines of an alpha helix in protein
[6]. Similarly the CNLS Eq. (1) and its generalizations
for N $ 3 are of physical relevance in the theory of soli-
ton wavelength division multiplexing [7], multichannel bit-
parallel-wavelength optical fiber networks [8], and so on.
In particular, for arbitrary N , Eq. (1) governs the propa-
gation of N-self-trapped mutually incoherent wave pack-
ets in Kerr-like photorefractive media [9] in which qj is the
jth component of the beam, z and t represent the normal-
ized coordinates along the direction of propagation and the
transverse coordinate, respectively, and

PN
p�1 jqpj

2 repre-
sents the change in the refractive index profile created by
all incoherent components of the light beam [9] when the
medium response is slow. The parameter m � k2

0n2�2,
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where n2 is the nonlinear Kerr coefficient and k0 is the
free space wave vector.

In this Letter, we report the exact bright one and two
soliton solutions, first for the N � 3 case and then for the
arbitrary N case, where the procedure can be extended in
principle to higher order soliton solutions, using the Hirota
bilinearization method. In particular, we point out that
the shape changing inelastic collision property persists for
the N $ 3 cases also as in the N � 2 (Manakov) case
reported recently [5], giving rise to many possibilities of
energy exchange. Furthermore, we point out that in the
context of spatial solitons the partially coherent stationary
solitons (PCS) reported in the recent literature [9,10] are
special cases of the above general soliton solutions which
undergo shape changing collisions.

The bright one-soliton and two-soliton solutions of the
3-CNLS system,

iqjz 1 qjtt 1 2m�jq1j
2 1 jq2j

2 1 jq3j
2�qj � 0 ,

j � 1, 2, 3 , (2)

can be obtained from its equivalent bilinear form resulting
from the transformation qj � g� j��f,

�iDz 1 D2
t �g� j� ? f � 0 ,

D2
t f ? f � 2m
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where � denotes the complex conjugate, Dz and Dt are
Hirota’s bilinear operators [11], and g� j�’s are complex
functions, while f�z, t� is a real function. The resulting
set of Eqs. (3) can be solved recursively by making the
power series expansion g� j� � xg

� j�
1 1 x3g

� j�
3 1 . . . ,

f � 1 1 x2f2 1 x4f4 1 . . . , j � 1, 2, 3, where x is
a formal expansion parameter. In order to get the one-
soliton solution, the power series expansions are termi-
nated as g� j� � xg

� j�
1 and f � 1 1 x2f2. After deducing

g� j� and f as g� j� � a
� j�
1 eh1 , j � 1, 2, 3 and f �

1 1 eh11h
�
11R , where eR � m
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the bright one-soliton solution is obtained as

�q1, q2, q3�T �
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1 1 eh11h
�
11R

�a�1�
1 , a
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1 , a

�3�
1 �T ,

�
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cosh�h1R 1
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�A1, A2, A3�T , (4)

where h1 � k1�t 1 ik1z�, Aj � a
� j�
1 �D, and D �

�m�
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1 j2��1�2. Here a

� j�
1 , k1, j � 1, 2, 3, are four

arbitrary complex parameters. Further k1RAj gives the
amplitude of the jth mode and 2k1I the soliton velocity.

The general bright two-soliton solution of Eq. (2) can
be generated by terminating the series as g� j� � xg

� j�
1 1

x3g
� j�
3 and f � 1 1 x2f2 1 x4f4 and solving the re-

sultant linear partial differential equations. This solution
contains eight arbitrary complex parameters, a

� j�
l and kl ,

l � 1, 2 and j � 1, 2, 3. It is given by
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l �, i, l � 1, 2, j � 1, 2, 3. Though one can pro-

ceed to obtain higher order soliton solutions in principle
by making use of the general power series expansion,
the details become complicated and we will present the
results separately.

The nature of the interaction of the underlying solitons
can be well understood by making an asymptotic analy-
sis of the two-soliton solution [5]. Asymptotically, the
two-soliton solution (5) can be written as a combination
of two one-soliton solutions and their forms in the two dif-
ferent regimes z ! 2` and z ! ` are similar to those
of the one-soliton solution given in Eq. (4) but differing
in amplitude (intensity) and phase. The analysis reveals
that there is an intensity exchange among the three com-
ponents of each soliton during this two-soliton interaction,
which can be quantified by defining a transition matrix Tl

j

such that Al1
j � Al2

j T l
j , j � 1, 2, 3, and l � 1, 2, where

the superscripts l6 represent the solitons designated as S1

and S2 at z ! 6`, and klRAl6
j denote the corresponding

amplitudes.
Consequently, the three modes q1, q2, and q3 of S1 hav-

ing magnitudes of amplitudes jA12
j jk1R � ja

� j�
1 jk1R�D1,

where D1 � �m�
P3

j�1 ja
� j�
1 j2��1�2, exchange intensity

given by the square of the transition matrices, jT1
j j

2 �

j1 2 l2�a� j�
2 �a

� j�
1 �j2�j1 2 l1l2j, j � 1, 2, 3, along

with a phase shift F1 � �R3 2 R2 2 R1��2 during
collision. Here l1 � k21�k11 and l2 � k12�k22. In
a similar fashion due to collision the three modes q1,
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q2, and q3 of S2 also exchange an amount of intensity,

jT2
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2 � j1 2 l1l2j�j1 2 l1�a� j�
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� j�
2 �j2, j � 1, 2, 3,

respectively, and change their amplitudes to
jA21

j jk2R � ja
� j�
2 jk2R�D2 from jA22

j jk2R , respectively.

Here D2 � �m�
P3

j�1 ja
� j�
2 j2��1�2. The associated phase

shift for this soliton is F2 � 2�R3 2 R2 2 R1��2. We
also note there is a net change in the relative separa-
tion distance between the solitons due to collision by
Dx12 � �k1R 1 k2R� j�R3 2 R2 2 R1�j�2k1Rk2R .

Also, we note that for the special case jTl
j j � 1,

l � 1, 2, j � 1, 2, 3, which is possible only when

a
�1�
1 �a

�1�
2 � a

�2�
1 �a

�2�
2 � a

�3�
1 �a

�3�
2 , the collision corre-

sponds to the standard elastic collision. For all other cases,
the quantity jTl

j j fi 1, which corresponds to a change
in the values of the amplitudes of the individual modes
leading to a redistribution of the intensities among them
and corresponding to a change in the shape of the soliton.
However, during the interaction the total intensity of the
individual solitons S1 and S2 remains conserved, that is
jAl7

1 j2 1 jAl7
2 j2 1 jAl7

3 j2 � 1�m.
The above shape changing (inelastic) collision during

the two-soliton interaction of the 3-CNLS can occur in
two different ways. The first case is an enhancement
of intensity in any one of the modes of either one of
the solitons (say S1) and suppression in the remaining
two modes of the corresponding soliton with commen-
surate changes in the other soliton S2. The other pos-
sibility is an interaction which allows one of the modes
of either one of the solitons (say S1) to get suppressed
while the other two modes of the corresponding soliton
to get enhanced (with corresponding changes in S2). In
either of the cases, the intensity may be completely or
partially suppressed (enhanced). Thus as a whole dur-
ing the inelastic interaction among the two one solitons
S1 and S2 of the 3-CNLS, the soliton S1 �S2� has the fol-
lowing six possible combinations to exchange the intensity
among its modes: �q1, q2, q3� ! �qa

1 , qb
2 , qc

3�i �a, b, c �
S �suppression�, E �enhancement��, with i � 1, a � E,
b � S, c � S; i � 2, a � S, b � E, c � S; i � 3,
a � S, b � S, c � E; i � 4, a � S, b � E, c � E;
i � 5, a � E, b � S, c � E, and i � 6, a � E, b � E,
c � S.

Two of the above interactions involving a dramatic
switching in the intensity are depicted in Fig. 1 for
illustrative purposes for a specific choice of soliton pa-
rameters. These may also be viewed as the two-soliton
interaction in a waveguide supporting propagation of three
nonlinear waves simultaneously. For other choices, in
general, partial suppression (enhancement) of intensity
among the components will occur depending on the values
of the transition matrix elements Tl

j . Figure 1a is plotted

for the parameters k1 � 1 1 i, k2 � 2 2 i, a
�1�
2 �

a
�2�
2 � �39 1 i80��89, a

�1�
1 � a

�2�
1 � a

�3�
1 � a

�3�
2 � 1,

and m � 1. In this figure the intensities of the components
q1 and q2 of S1 �S2� are almost completely suppressed
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  (a)     (b)

FIG. 1. Intensity profiles of the three modes of the two-soliton
solution in a waveguide described by the CNLS Eq. (2) showing
two different dramatic scenarios of the shape changing collision.
The parameters are chosen as in the text.

(enhanced) and that of the third component is enhanced
(suppressed). The second possibility of enhancement
(suppression) of intensity in the q1 and q2 components
of S1 �S2� and suppression (enhancement) of intensity
in its q3 component are shown in Fig. 1b, in which
the parameters are chosen as k1 � 1 1 i, k2 � 2 2 i,
a

�1�
1 � 0.02 1 0.1i, a

�2�
1 � 0.1i, a

�3�
1 � a

�1�
2 � a

�2�
2 �

a
�3�
2 � 1.
Now it is straightforward to extend the above analysis to

obtain the one-soliton and two-soliton solutions of the ar-
bitrary N-CNLS Eq. (1). After making the bilinear trans-
formation qj � g� j��f, j � 1, 2, 3, . . . , N in Eq. (1), one
can get a set of bilinear equations of the form (3) but now
with j, n � 1, 2, 3, . . . , N . Then by expanding g� j�s and f
in power series up to N terms and following the procedure
mentioned above, the one-soliton and two-soliton solutions
of Eq. (1) can be obtained.

(a) One-soliton solution.

�q1, q2, . . . , qN �T �
k1Reih1I

cosh�h1R 1
R
2 �

�A1, A2, . . . , AN �T ,

(6)

where h1 � k1�t 1 ik1z�, Aj � a
� j�
1 �D, D �

�m�
PN

j�1 ja
� j�
1 j2��1�2, eR � D2��k1 1 k�

1�2, a
� j�
1 and

k1, j � 1, 2 . . . , N , are �N 1 1� arbitrary complex
parameters.

(b) Two-soliton solution.—This solution will also be
of the same form as Eq. (5) with the replacements, j �
1, 2, . . . , N and kil � m
PN

n�1 a
�n�
i a

�n��
l ��ki 1 k�

l �, where
i, l � 1, 2. One can also verify that this two-soliton so-
lution will depend on 2�N 1 1� complex parameters and
the shape changing interaction can lead to intensity redis-
tribution among the modes of the soliton of the N-CNLS
system in 2N 2 ways (by generalizing the N � 3 case).
We believe that such studies will have important applica-
tions in logic gates and all optical computations [12].

From an application point of view, it has been observed
recently that the CNLS equations can support a kind of
stationary solutions known as partially coherent solitons
(PCS). In particular, explicit forms of such solutions have
been given for N � 2, 3, and 4 cases of Eq. (1) in Ref. [9].
They have also been shown to have variable shapes. Now,
the generalized Manakov equation (1) is integrable [13],
and hence its N-soliton solution can be obtained in prin-
ciple by extending our above analysis. So the natural ques-
tion arises as to what is the relation between the PCS and
the exact N-soliton solutions.

To answer the above question, let us look at the N � 2,
3, and 4 cases of Eq. (1) explicitly. One can check that
very special cases corresponding to specific parametric re-
strictions in the two-soliton solution of the N � 2 case, the
three-soliton solution of the N � 3 case, and four-soliton
solution of the N � 4 case give rise to the 2-soliton,
3-soliton, and the 4-soliton PCSs, respectively, reported in
[9]. In order to appreciate this we consider as an illustra-
tion the three-soliton solution of the N � 3 case of Eq. (1).
Instead of writing down the full 3-soliton solution of the
N � 3 case explicitly and choosing the special parametric
values, we make the following simplified procedure.
Starting from the bilinear Eqs. (3) and terminating the

series for g� j� and f as g� j� � xg
� j�
1 1 x3g

� j�
3 1 x5g

� j�
5

and f � 1 1 x2f2 1 x4f4 1 x6f6, one can identify

g
� j�
1 � a

� j�
1 eh1 1 a

� j�
2 eh2 1 a

� j�
3 eh3 where hn � kn�t 1

iknz�, j, n � 1, 2, 3 in which a
� j�
i and ki are complex

parameters. Finding g
� j�
3 , g

� j�
5 , j � 1, 2, 3, f2, f4, and

f6, the three soliton solution is obtained. Instead, as
a special case, we look for a stationary solution with

knI � 0, a
�1�
2 � a

�1�
3 � a

�2�
1 � a

�2�
3 � a

�3�
1 � a

�3�
2 � 0,

and a
�1�
1 � 2a

�2�
2 � a

�3�
3 � 1, in order to gain insight

into the physics of the problem. Then, the resulting
explicit expression for the three-soliton solution has
been found after simple algebraic manipulation to be
exactly the same as the stationary PCS for N � 3 given
in Eq. (17) of Ref. [9a]. One can also check that with
the choice knI � 0, a

�1�
2 � a

�2�
1 � 0, a

�1�
1 � 2a

�2�
2 � 1,

in the two-soliton solution of the N � 2 case (Manakov
equation) [5] of Eq. (1), the N � 2 soliton complex (PCS)
is obtained. By a similar analysis we have verified that the
N � 4 PCS also results as a special case of the 4-soliton
solution of the 4-CNLS equation. Extending this idea it
is clear that the PCS which is formed due to a nonlinear
superposition of N-fundamental solitons [9] is a special
case of N-soliton solution of the N-CNLS Eq. (1).
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Further, it has been found that these PCS are of variable
shape and also change their shape during collision with
another PCS [9]. The reason for the shape change of the
PCS can be deduced from the interaction properties of the
solitons discussed above. The solitons are characterized
by their amplitudes Al

jklR and their velocities 2klI [so
that the angle of incidence is ul � tan21�2klI �]. During
a pairwise interaction of two fundamental solitons of
N-CNLS equation there is an energy sharing between
them resulting in a novel shape changing collision,
depending on the transition matrix elements Tl

j , the
phase shift Fl , and a change in the relative separation
distance Dxij defined earlier. Since the PCS is a special
case of the N-soliton solution, parametrized as above,
it naturally possesses a variable shape. For example,
in Figs. 1, the solitons S1 and S2 are traveling with
velocities 2k1I � 2 and 2k2I � 22, respectively. For
the chosen parameters, in Fig. 1a, the amplitudes of the
modes of the solitons S1 and S2 before interaction given,
respectively, by k1RjA

12
j j � �0.577, 0.577, 0.577� and

k2RjA
22
j j � �0.857, 0.857, 1.591� change to k1RjA

11
j j �

�0.183, 0.183, 0.966� and k2RjA
21
j j� �1.155, 1.155, 1.155�

after interaction, preserving the total intensity of each of
the soliton. Similarly in Fig. 1b, the amplitudes of the soli-
tons S1 and S2 before interaction are �0.101, 0.099, 0.990�
and �1.322, 1.335, 0.686�, respectively, while after
interaction they become �0.466, 0.484, 0.741� and
�1.155, 1.155, 1.155�. The phase shifts suffered by the
solitons are F1 � 2F2 � 20.787 (Fig. 1a), 20.600
(Fig. 1b). During the collision process the initial separa-
tion distance x2

12 � 20.668 changes to x1
12 � 0.513 in

Fig. 1a and 20.036 to 0.865 in Fig. 1b.
In a similar way, the variable shape of the PCS dur-

ing interaction with another PCS also arises from the fun-
damental bright soliton collision of the Manakov system.
The collision of two PCS each comprising m and n soliton
complexes, respectively, such that m 1 n � N , is equiva-
lent to the interaction of N fundamental bright solitons (for
suitable choice of parameters) represented by the special
case of N-soliton solution of the N-CNLS system. Further
details will be published elsewhere.

Our above analysis has considerable practical relevance
in view of the various recently reported interesting ex-
perimental observations. First, the Manakov spatial soli-
tons have been observed in AlGaAs planar waveguides
[14] and their collisions involving energy exchange of
precisely the type discussed here have been experimen-
tally demonstrated [15]. Also collisions between PCS’s
of shape changing type as treated here were observed in
a photorefractive strontium barium niobate crystal using
screening solitons [16]. Further partially incoherent soli-
tons have been observed through excitation by partially
coherent light [17] and with a light bulb [18]. Using dif-
ferent techniques, such as the coherent density function
theory [19], to describe such incoherent solitons one can
obtain the N-coupled NLS equations of the form (1) con-
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sidered in this Letter. We believe that our exact analytical
results will give further impetus in the experimental inves-
tigations of these solitons.

In conclusion, we have shown that N-CNLS Eq. (1) pos-
sesses a fascinating type of soliton solution undergoing a
shape changing (inelastic) collision property due to inten-
sity redistribution among its modes. The many possibilities
for such collisions to occur provide interesting avenues of
research in developing logic gates and in all-optical digi-
tal computations [12]. We have also shown the interesting
fact that the multisoliton complexes are special cases of
the shape changing bright soliton solutions and pointed out
that the variable shape of PCS is due to the shape changing
collision of the fundamental solitons which is an inherent
nature of the N-CNLS system.

The work of M. L. and T. K. forms part of a Department
of Science and Technology, Government of India research
project.
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