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We show that, independently of the size of the quark condensate, chiral symmetry correlates the two
S-wave pp scattering lengths. In view of this constraint, the new precision data on Ke4 decay allow a
remarkably accurate determination of these quantities. The result confirms the hypothesis that the quark
condensate is the leading order parameter.
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Since the masses of the two lightest quarks are very
small, the Hamiltonian of QCD is almost exactly invariant
under the group SU�2�R 3 SU�2�L of chiral rotations. On
phenomenological grounds, it is known that this symmetry
is spontaneously broken, the pions playing the role of the
corresponding Goldstone bosons [1]. If the symmetry were
exact, the pions would be massless. According to Gell-
Mann, Oakes, and Renner [2], the square of the pion mass
is proportional to the product of the quark masses and the
quark condensate:

M2
p �

1
F2

p

3 �mu 1 md� 3 j�0jūuj0�j . (1)

The factor of proportionality is given by the pion decay
constant Fp . The term mu 1 md measures the explicit
breaking of chiral symmetry, while the quark condensate
�0jūuj0� is a measure of the spontaneous symmetry break-
ing: It may be viewed as an order parameter and plays
a role analogous to the spontaneous magnetization of a
magnet.

The approximate validity of the relation (1) was put to
question by Stern and collaborators [3], who pointed out
that there is no experimental evidence for the quark con-
densate to be different from zero. Indeed, the dynamics
of the ground state of QCD is not understood —it could
resemble the one of an antiferromagnet, where, for dy-
namical reasons, the most natural candidate for an order
parameter, the magnetization, happens to vanish. What
can be shown from first principles is only that (i) the ex-
pansion of M2

p in powers of the quark masses starts with
a linear term,

M2
p � M2 2

�̄3

32p2F2 M4 1 O�M6� ,

M2 � �mu 1 md�B ,
(2)

and (ii) the coefficient B of the linear term is given by
the value of j�0jūuj0�j�F2

p in the limit mu, md ! 0. The
quantity �̄3 is one of the coupling constants occurring in
the effective Lagrangian at order p4. The symmetry does
not determine its size. The crude estimates underlying
the standard version of chiral perturbation theory (CHPT)
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[4] indicate values in the range 0 , �̄3 , 5. The term
of order M4 is then very small compared to the one of
order M2, so that the Gell-Mann-Oakes-Renner formula is
obeyed very well. Stern and collaborators investigate the
more general framework, referred to as generalized CHPT,
where arbitrarily large values of �̄3 are considered. The
quartic term in Eq. (2) can then take values comparable to
the “leading,” quadratic one. If so, the dependence of M2

p

on the quark masses would fail to be approximately linear,
even for values of mu and md of the order of a few MeV. A
different bookkeeping for the terms occurring in the chiral
perturbation series is then needed [3]—the standard chiral
power counting is adequate only if �̄3 is not too large.

The purpose of the present note is to show that (i) in the
generalized scenario, the low energy structure is controlled
by a single parameter, here denoted by �̄3, (ii) this parame-
ter can be determined on the basis of the Ke4 data taken
recently at Brookhaven [5,6], and (iii) the result beautifully
confirms the Gell-Mann-Oakes-Renner formula.

The following analysis relies on the fact that the low
energy properties of the pions are controlled by two pa-
rameters: the S-wave scattering lengths a0

0, a2
0 . If these

are given, the Roy equations [7] allow us to calculate the
scattering amplitude in terms of the absorptive parts above
800 MeV and the available experimental information about
the latter suffices to evaluate the relevant dispersion inte-
grals, to within small uncertainties [8].

Weinberg’s low energy theorem [9] predicts the two
scattering lengths in terms of the pion decay constant, so
that the scattering amplitude is then fully determined. The
prediction is of limited accuracy, because it holds only
to leading order of an expansion in powers of the quark
masses mu and md . At first nonleading order of the expan-
sion in powers of momenta and quark masses, the scatter-
ing amplitude can be expressed in terms of Fp , Mp , and
the coupling constants �1, . . . , �4 that occur in the deriva-
tive expansion of the effective Lagrangian at order p4

(throughout, we ignore isospin breaking effects and work
with mu � md � m). The terms �1 and �2 manifest them-
selves in the energy dependence of the scattering ampli-
tude and can thus be determined phenomenologically. The
© 2001 The American Physical Society
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term �3 was mentioned above— the range considered for
this coupling constant makes the difference between stan-
dard and generalized CHPT. Finally, �4 is related to the
slope of the scalar form factor, which is known rather ac-
curately from dispersion theory: �r2�s � 0.61 6 0.04 fm2

[10–12].
As pointed out long ago [13], there is a low energy

theorem that relates the S-wave scattering lengths to the
scalar radius:

2a0
0 2 5a2

0 �
3M2

p

4pF2
p

Ω
1 1

1
3

M2
p�r2�s 1

41M2
p

192p2F2
p

æ

1 O�m3� . (3)

The theorem shows that the first order correction to the
Weinberg formula for this particular combination of scat-
tering lengths is determined by �r2�s. It correlates the two
scattering lengths, irrespectively of the numerical value
of �3: The correlation holds both in standard and gener-
alized CHPT.

The corrections occurring in Eq. (3) at order m3 are also
known [14]. In the following, we analyze the correlation
at that level of precision, using the method described in
Ref. [10]—except that we now treat the coupling constant
�3 as a free parameter. For the symmetry breaking cou-
plings entering the effective Lagrangian at order p6, we as-
sume that the estimates given in Ref. [15] are valid within
a factor of 2 (see [16] for a detailed error analysis). The ex-
perimental input used for the Roy equations is taken from
Ref. [8]. Up to the noise attached to these ingredients, the
Roy equations then determine the scattering amplitude as
a function of the parameter �3. In particular, we may cal-
culate a0

0 and a2
0 as functions of �3. The result is well

described by a parabola:

a0
0 � 0.225 2 1.6 3 1023�̄3

2 1.3 3 1025��̄3�2,

a2
0 � 20.0434 2 3.6 3 1024�̄3

2 4.3 3 1026��̄3�2.

(4)

Eliminating the parameter �3, we obtain the following
correlation between a2

0 and a0
0:

a2
0 � 20.0444 6 0.0008 1 0.236�a0

0 2 0.22�
2 0.61�a0

0 2 0.22�2 2 9.9�a0
0 2 0.22�3. (5)

The error given accounts for the various sources of uncer-
tainty in our input. The relation is indicated in Fig. 1: The
values of a0

0 and a2
0 are constrained to a narrow strip that

runs along the lower edge of the universal band, which
is indicated by the tilted straight lines. As discussed
in Ref. [8], a qualitatively similar correlation also results
from the Olsson sum rule [18]— the two conditions are
perfectly compatible, but the one above is considerably
more stringent.

The analysis of the final state distribution observed in the
decay K ! ppen yields a measurement of the phase dif-
ference d�s� � d

0
0�s� 2 d

1
1�s�, for 4M2

p , s , M2
K . At
FIG. 1. S-wave scattering lengths. The Roy equations only
admit solutions in the “universal band,” spanned by the two
tilted lines. The correlation in Eq. (5) constrains the values to
the narrow shaded strip. The full circle indicates Weinberg’s
leading order result, while the triangle with error bars shows
the phenomenological range permitted by the old data, a0

0 �
0.26 6 0.05, a2

0 � 20.028 6 0.012 [17].

those energies, d�s� is dominated by the contribution ~ a0
0

from the S-wave scattering length. The correlation be-
tween a2

0 and a0
0 allows us to correct for the higher or-

der terms of the threshold expansion and to express the
phase difference in terms of a0

0 and q, where q is the c.m.
momentum in units of Mp , s � 4M2

p �1 1 q2�. In the re-
gion of interest (q , 1, 0.18 , a0

0 , 0.26), the prediction
reads

d0
0 2 d1

1 �
qp

1 1 q2
�a0

0 1 q2b 1 q4c 1 q6d� 6 e ,

b � 0.2527 1 0.151Da0
0

1 1.14�Da0
0�2 1 35.5�Da0

0�3,

c � 0.0063 2 0.145Da0
0, d � 20.0096 ,

(6)

with Da0
0 � a0

0 2 0.22. The uncertainty in this relation
mainly stems from the experimental input used in the Roy
equations and is not sensitive to a0

0:

e � 0.0035q3 1 0.0015q5. (7)

The prediction (6) is illustrated in Fig. 2, where the energy
dependence of the phase difference is shown for a0

0 �
0.18, 0.22, and 0.26. The width of the corresponding bands
indicates the uncertainties, which according to (7) grow in
proportion to q3 — in the range shown, they amount to less
than a third of a degree.

The figure shows that the data of Ref. [19] barely dis-
tinguish between the three values of a0

0 shown. The pre-
liminary results of the E865 experiment at Brookhaven
[6] are significantly more precise, however. The best fit to
these data is obtained for a0

0 � 0.218, with x2 � 5.7 for
5 degrees of freedom. This beautifully confirms the very
sharp predictions obtained on the basis of standard CHPT:
a0

0 � 0.220 6 0.005, a2
0 � 20.0444 6 0.0010 [10,20].
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FIG. 2. Phase relevant for the decay K ! ppen. The three
bands correspond to the three indicated values of the S-wave
scattering length a0

0 . The uncertainties are dominated by those
from the experimental input used in the Roy equations. The
triangles are the data points of Ref. [19], while the full circles
represent the preliminary E865 results [6].

There is a marginal problem only with the bin of lowest
energy: The corresponding scattering lengths are outside
the region where the Roy equations admit solutions. In
view of the experimental uncertainties attached to that
point, this discrepancy is without significance: The differ-
ence between the central experimental value and the pre-
diction amounts to 11

2 standard deviations. Note also that
the old data are perfectly consistent with the new ones:
The overall fit yields a0

0 � 0.221 with x2 � 8.3 for 10 de-
grees of freedom.

The relation (6) can be inverted, so that each one of the
values found for the phase difference yields a measure-
ment of the scattering length a0

0. The result is shown in
Fig. 3. The experimental errors are remarkably small. It is
not unproblematic, however, to treat the data collected in

FIG. 3. Ke4 data on the scattering length a0
0. The triangles are

the data points of Ref. [19], while the full circles represent the
preliminary E865 results [6]. The horizontal band indicates the
mean value, a0

0 � 0.221 6 0.026.
5010
the different bins as statistically independent: In the pres-
ence of correlations, this procedure underestimates the ac-
tual uncertainties. Also, since the phase difference rapidly
rises with the energy, the binning procedure may intro-
duce further uncertainties. To be on the conservative side,
we estimate the uncertainties by using the 95% confidence
limit, where we obtain a0

0 � 0.221 6 0.026. For the fi-
nal data analysis, we refer to a forthcoming paper by the
E685 Collaboration.

We may translate the result into an estimate for the
magnitude of the coupling constant �̄3. In this language,
the above conclusion for the value of a0

0 corresponds to
j�̄3j & 16. Although this is a coarse estimate, it implies
that the Gell-Mann-Oakes-Renner relation does represent
a decent approximation: More than 94% of the pion mass
stems from the first term in the quark mass expansion (2),
i.e., from the term that originates in the quark condensate.

We are indebted to S. Pislak and P. Truöl for providing
us with preliminary data of the E865 Collaboration.
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