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Supersymmetric Ratchets
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The overdamped Brownian motion in a periodic potential under far from equilibrium conditions is
considered. A large class of systems with an intrinsic asymmetry, called supersymmetric ratchets, is
identified for which the occurrence of directed transport can be ruled out without any fine-tuning of
parameters.
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At thermal equilibrium, a Brownian particle in a
spatially periodic, asymmetric “ratchet” potential cannot
exhibit a systematic drift in one or the other preferential
direction due to the second law of thermodynamics [1,2].
Away from equilibrium, the occurrence of a systematic
particle current (ratchet effect) is observed generically,
even though all acting forces still average out to zero
[3–7]. While interesting exceptional cases with zero net
motion (current reversals [8–12]) are still possible, they
are untypical in the sense that they require a fine-tuning
of certain model parameters. In other words, away from
thermal equilibrium, the absence rather than the presence
of directed transport in spite of the broken spatial symme-
try is the truly astonishing situation. In our present work,
an entire class of such exceptional cases is identified,
which, in particular, do not require a fine-tuning of model
parameters.

As a first model class, we consider the one-dimensional,
overdamped “tilting-ratchet” dynamics [3–7]

h �x�t� � 2V 0���x�t���� 1 f�t� 1 j�t� , (1)

where h is the viscous friction coefficient, V �x� is a ratchet
potential with period L, and thermal fluctuations are mod-
eled by Gaussian white noise j�t� with zero average and
correlation

�j�t�j�s�� � 2hkBTd�t 2 s� . (2)

The “tilting force” f�t� drives the system away from ther-
mal equilibrium, and may be either an unbiased periodic
function of time or an unbiased stationary stochastic pro-
cess. In other words, all forces on the right-hand side of
(1) are zero after averaging over space, time, and statistical
ensembles. The quantity of central interest is the average
particle current in the long time limit

� �x� :� lim
t2t0!`

x�t� 2 x�t0�
t 2 t0

, (3)

which takes the same value for each realization x�t� with
probability one (self-averaging).

As an example and a motivation for our systematic dis-
cussion below, we consider a ratchet potential V �x� as de-
picted in Fig. 1 and a nonequilibrium forcing f�t� which
may be for instance (i) a sinusoidal, time-periodic func-
tion, (ii) a symmetric dichotomous noise, (iii) an Ornstein-
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Uhlenbeck process, (iv) a symmetric white shot noise, or
(v) an arbitrary linear combination thereof. The extensive
previous investigations [3–7,9–12] of such ratchet sys-
tems (1) strongly suggest that in either of these examples
a nonvanishing particle current (3) is to be generically ex-
pected. Surprisingly indeed, we will demonstrate below
that the contrary is the case: The particle current identi-
cally vanishes for any choice of the friction coefficient h,
the temperature T , and the characteristic amplitude, time
scale, etc. of the driving f�t�. For additional examples, see
also Fig. 2.

We begin our systematic discussion with the following
definitions: We call a potential V �x� supersymmetric
if there exist a Dx and a DV such that 2V �x� �
V �x 1 Dx� 1 DV for all x. Since additive constants are
irrelevant for the potential V �x�, we henceforth focus on
the case DV � 0. Further, by applying the above defined
supersymmetry transformation twice, we can conclude
that V �x 1 2Dx� � V �x� for all x. Under the assumption
that L is the fundamental period of V �x�, i.e., the smallest
z . 0 with V �x 1 z� � V �x�, we can conclude that
Dx � L�2. The supersymmetry criterion thus takes the
form

2V �x� � V �x 1 L�2� . (4)

An immediate implication of (4) is that for any minimum
of V �x�, say at x � xmin, there exists a corresponding
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FIG. 1. Example of a ratchet potential V �x�, satisfying the
supersymmetry condition (4).
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FIG. 2. Three combinations of L-periodic potentials V �x� and
t-periodic drivings f�t� with different types of symmetries. The
reader is invited to guess in which cases a vanishing current
(3) arises in the stochastic dynamics (1) and (2), and in which
cases a finite current occurs generically (without fine-tuning of
parameters). For the resolution, see main text.

maximum at x � xmin 1 L�2 and vice versa. For the rest,
the condition (4) is still satisfied by a very large class of
potentials V �x� of the general form

V �x� �
X̀

n�1,3,5,...

an cos

µ
2pnx

L
1 fn

∂
. (5)

A typical example is depicted in Fig. 1.
Turning to the driving f�t�, we will call it supersymmet-

ric if for a periodic f�t� we have that 2f�t� � f�2t 1

Dt� for all t and an appropriate Dt, which can be trans-
formed to zero by an irrelevant shift of the time scale.
For a stochastic f�t� (unbiased and stationary) we speak
of supersymmetry if all statistical properties of the pro-
cess 2f�t� are identical to those of f�2t�. By extending
the meaning of the equality sign “�” along this statistical
spirit, the supersymmetry criterion can thus be written for
both, periodic and stochastic f�t�, as

2f�t� � f�2t� . (6)

As a consequence, a supersymmetric, time periodic f�t�
with period t is of the general form

f�t� �
X̀
n�1

bn sin

µ
2pnt

t

∂
, (7)

while for a stochastic f�t� the condition (6) is equivalent
to the requirement [13] that

� f�t1�f�t2� · · · f�tn�� � �21�n� f�2t1�f�2t2� · · · f�2tn��

(8)

for all integers n $ 1 and all times t1, t2, . . . , tn. For ex-
amples, see (i)– (v) above. Especially, linear combinations
of periodic and stochastic f�t� are admissible as well.
Regarding the above introduced notion of supersymme-
try, we remark that for undriven [ f�t� � 0] systems (1)
the connection with supersymmetric quantum mechanics
[14] is due to [15]. The basic idea is to transform the
Fokker-Planck equation [16] associated with (1) and (2)
into a Schrödinger-type equation [17]. By replacing in this
equation the potential by its supersymmetric partner poten-
tial (in the quantum mechanical sense) a new Schrödinger
equation emerges which can be transformed back into a
new Fokker-Planck equation. The potentials of the origi-
nal and the new Fokker-Planck equations then coincide (up
to irrelevant shifts Dx and DV of the origin) if and only if
the supersymmetry condition (4) is satisfied. In the pres-
ence of a driving f�t� in (1), a similar line of reasoning
has been developed in [18], yielding the supersymmetry
condition (6). Throughout our present paper, we will bor-
row the previously established notion of supersymmetry for
the conditions (4) and (6), but we will neither exploit nor
further discuss their connection with quantum mechanical
concepts.

We now come to the central point of our paper, namely
the proof that supersymmetry of both V �x� and f�t� implies
� �x� � 0: Introducing z�t� :� x�2t� 1 L�2, we can infer
�z�t� � 2 �x�2t�, i.e., the time averaged currents (3) satisfy
��z� � 2� �x�. In doing so, we have exploited the fact that
only deterministic and/or stationary stochastic processes
appear in (1), hence the evolution of the dynamics (1) back-
ward in time does not give rise to any problem. Especially,
2j�2t� is statistically equivalent to the forward Gaussian
white noise j�t�. On the other hand, if both V �x� and f�t�
are supersymmetric according to (4) and (6) then one can
readily see that z�t� satisfies the same dynamics (1) as x�t�.
Because of the self-averaging property of the current in (3)
it follows that ��z� � � �x�. In view of our previous finding
��z� � 2� �x� we can conclude that � �x� � 0; see also [19].

It is instructive to compare this result with the corre-
sponding situation in “symmetric” instead of supersym-
metric systems. To this end, a potential V �x� will be
called symmetric if there exists a Dx such that V �2x� �
V �x 1 Dx�, or, after an irrelevant shift of the x scale,

V �2x� � V �x� . (9)

Thus, a symmetric V �x� can be recast into the general form

V �x� �
X̀
n�1

cn cos

µ
2pnx

L

∂
. (10)

Further, a periodic driving f�t� � f�t 1 t� is called sym-
metric if there exists a Dt such that 2f�t� � f�t 1 Dt�.
As in (4) one can infer [11] that Dt � t�2, i.e.,

2f�t� � f�t 1 t�2� , (11)

or, equivalently, that f�t� is of the general form

f�t� �
X̀

n�1,3,5,...

dn cos

µ
2pnt

t
1 cn

∂
. (12)

Finally, if f�t� is a stationary stochastic process, then we
call it symmetric if all statistical properties of 2f�t� are
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identical to those of f�t�. In the same spirit as in (6) this
may be symbolically indicated as

2f�t� � f�t� . (13)

Equivalent to this condition is the requirement [cf. (6), (8)]
that all odd moments of f�t� vanish [20], i.e.,

� f�t1�f�t2� · · · f�t2n11�� � 0 (14)

for all integers n $ 0 and all times t1, t2, . . . , t2n11. By
considering z�t� :� 2 x�t 1 t�2� one finds along the
same line of reasoning as in the preceding paragraph that
symmetry of both V �x� and f�t� implies � �x� � 0.

We emphasize again that the conclusion � �x� � 0 holds
true only if either both the potential and the driving are
symmetric, or if both of them are supersymmetric. In
any other case, � �x� fi 0 is expected generically (without
fine-tuning of parameters). As an illustration we consider
the three examples from Fig. 2. In order to bring out the
essential features as clearly as possible, we have chosen
stylized, nonsmooth potentials V �x� and drivings f�t� in
Fig. 2 and we restrict ourselves to time periodic f�t�. More
general examples can be easily constructed.

Figure 2a illustrates the most common case [3–7,9–12],
namely, an asymmetric (but not supersymmetric) ratchet
potential V �x� in combination with a symmetric (and at the
same time supersymmetric) f�t�. The potential is some-
what special in the sense that the distance between
subsequent extrema is — as for supersymmetric
potentials — always equal to L�2. Nevertheless, � �x� fi 0
is expected generically, i.e., without fine-tuning the model
parameters h, T , t, f�t�4�, L, and V �0� in (1) and (2).
We have corroborated this and all the following such
“expectations” by numerical simulations of (1).

Figure 2b depicts a second prototypical scenario,
namely, a symmetric (but not supersymmetric) potential
V �x� (i.e., not a ratchet potential) in combination with
a supersymmetric driving f�t�. The matching of the
linear pieces of this driving f�t� is characterized by
the parameter t0 [ �0, t�2�, giving rise to a symmetric
driving for t0 � t�4 (see Fig. 2a) and an asymmetric
driving in any other case (see Fig. 2b). As a result, a
generically nonzero current is obtained unless t0 � t�4;
see also [11,21]. Qualitatively, the same findings are re-
covered for a so-called harmonic mixing signal [22] of the
form f�t� � A sin�vt� 1 B sin�2vt 1 f� when f � 0,
corresponding to a supersymmetric but (for A, B fi 0)
asymmetric driving; see (7) and (11). In either case, if
the potential V �x� in Fig. 2b is replaced by a pure cosine
potential, then both V �x� and f�t� are supersymmetric
[see (5)] and hence the current must vanish. By further
deforming the potential V �x� such that it becomes asym-
metric but does not leave the class of supersymmetric
potentials [see (5) and Fig. 2c], the same result � �x� � 0
subsists. Finally, one can deform the driving f�t� into a
pure sinusoidal shape, leading us back to the setup which
we used as a motivation at the beginning of our paper.
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Next we turn to a second main class of models —so-
called “pulsating ratchets”—governed by the dynamics
[4–7]

h �x�t� � 2V 0���x�t�, f�t���� 1 j�t� , (15)

where V 0�x, f� :� ≠V �x, f��≠x. While f�t� and j�t� are
assumed to have the same properties as for the tilting
ratchet scheme (1) and (2), the potential V �x, f� is now
required to be L periodic in x for any fixed f value.

For a time periodic f�t� one finds upon comparison of
z�t� :� x�2t� 1 L�2 with x�t� along the very same line
of reasoning as above that � �x� � 0 provided there exist
Dx, Dt, DV such that 2V ���x, f�t���� � V ���x 1 Dx, f�2t 1

Dt���� 1 DV for all x and t. For a stochastic f�t�, the same
conclusion follows provided all statistical properties of
2V ���x, f�t���� are identical to those of V ���x 1 Dx, f�2t���� 1

DV . As usual, we can and will choose the t and V origins
such that Dt � 0 and DV � 0, while Dx can be identified
with L�2 as in (4). The supersymmetry criterion can thus
be rewritten for both periodic and stochastic f�t� as

2V ���x, f�t���� � V ���x 1 L�2, f�2t���� . (16)

Likewise, upon comparison of z�t� :� 2 x�t 1 t�2�
with x�t� one finds that � �x� � 0 on the condition that the
symmetry criterion

V ���2 x, f�t���� � V ���x, f�t���� (17)

is fulfilled. In summary, if either of the criteria (16) or
(17) is met, a vanishing current in (15) is the consequence,
while in any other case, a nonvanishing current is generi-
cally expected.

Within the realm of pulsating ratchets (15), one im-
portant subclass is so-called fluctuating potential ratchets,
characterized by a potential of the form

V ���x, f�t���� � V �x� �1 1 f�t�� . (18)

The summand 1 is a matter of convention, reflecting a kind
of “unperturbed” contribution to the total potential. A spe-
cial case is on-off ratchets when f�t� can take only two
possible values, one of them being 21 (potential “off”).
In this case of a fluctuating potential (18), the supersym-
metry condition for the total potential V ���x, f�t���� in (16) is
satisfied if and only if the static part V �x� fulfills the corre-
sponding supersymmetry criterion (4) and f�t� is time in-
version invariant [ f�2t� � f�t�]. Examples of this kind,
for which the result � �x� � 0 may be once more rather un-
expected at first glance, are potentials V �x� as in Fig. 1 in
combination with a driving f�t� of the type (i)–(v) from
above. On the other hand, the symmetry criterion (17) with
(18) is tantamount to the corresponding symmetry condi-
tion (9) for V �x�, independent of any further properties
of f�t�.

Returning to general potentials of the form V ���x, f�t����,
the supersymmetry condition (16) is still satisfied by a
very large class of such potentials and their exhaustive
characterization on an intuitive level seems rather difficult.
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Yet, two sufficient (but not necessary) simple conditions
for (16) can be given, namely, (a) the potential is of the
form

V ���x, f�t���� � V1�x� 1 V2�x�f�t� , (19)

where V1�x� is supersymmetric according to (4), V2�x� is
an arbitrary L�2-periodic function, and f�t� is supersym-
metric according to (6). (b) The driving f�t� is time in-
version invariant and the potential V ���x, f�t���� is for every
fixed f�t� value supersymmetric in the sense of (4). Note
that not only the shape of V ���x, f�t���� but also the location
of the extrema may still be different for any f�t� value.
[In other words, an and fn in (5) may now be arbitrary
functions of f�t�.] The verification that either of these two
conditions indeed implies (16) is straightforward. A flurry
of interesting and prima facie quite unexpected examples
producing zero current without any fine-tuning of parame-
ters follows immediately.

We close with three remarks: First, the above symme-
try and supersymmetry concepts can be readily generalized
to higher dimensions and to other classes of overdamped
ratchet systems [23]. Examples are dynamics of the form
(1) with f�t� � 0 but instead with a temporally or spatially
periodic modulation of the temperature T in (2). Also the
intriguing “accidental” result � �x� � 0 for interacting ratch-
ets from [24] can naturally be explained by a generalized
supersymmetry argument. Second, besides the remarkable
analogy between symmetry and supersymmetry there is
also one fundamental difference which appears if an addi-
tional inertia term mẍ�t� is included on the left-hand side
of (1) or (15): While symmetry implies � �x� � 0 even
in the presence of inertia effects, the same conclusion no
longer applies in the case of supersymmetry. For example,
a tilting ratchet (1) with a cosine potential V �x� and a su-
persymmetric driving f�t� as in Fig. 2b implies � �x� � 0
in the overdamped limit but generically � �x� fi 0 if inertia
is included. Yet, for any sufficiently small deviations from
a perfectly supersymmetric situation, the current � �x� will
still be arbitrarily small. In the Hamiltonian limit of van-
ishing dissipation and thermal noise, a condition reminis-
cent of supersymmetry has been introduced in [25], while
in the intermediate regime of finite inertia and finite dissi-
pation, no comparable symmetry concept is known. Our
last remark is that time inversion invariance as well as the
condition of detailed balance [16] is not directly related to
the symmetry and supersymmetry criteria of our present
paper.
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