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We present a proposal for protecting states against decoherence, based on the engineering of pointer
states. We apply this procedure to the vibrational motion of a trapped ion, and show how to protect
qubits, squeezed states, approximate phase eigenstates, and superpositions of coherent states.
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It is well known that the interaction of a quantum sys-
tem with its surrounding environment may lead to quantum
entanglement between system and environment, and to an
irreversible loss of information on the system. Which set
of states is less sensitive to entanglement (“pointer states”)
depends on the concrete form of the interaction between
system and environment [1]. This interaction rapidly en-
tangles any superposition of these states with unobservable
states of the environment in such a way that the reduced
density matrix of the system is indistinguishable from a
statistical mixture. On the other hand, pointer states are
more stable, minimizing the rate at which the system loses
purity. The decoherence process by which coherent super-
positions of pointer states get transformed into statistical
mixtures is at the heart of the quantum theory of measure-
ment [2], and plays an essential role in the classical limit
of quantum mechanics [3].

Fighting decoherence has become a major challenge in
the last years, motivated by recent progress in the theory of
quantum information processing, which relies on the pos-
sibility of preserving quantum coherence [4,5]. It is also
of interest to high-precision frequency measurements in
ion traps [6]. Several strategies have been devised. They
include quantum error correction schemes [7], feedback
implementations [8,9], the realization of qubits in symmet-
ric subspaces decoupled from the environment [10], and
dynamical decoupling techniques [11].

In linear ion traps, by far the most important decoher-
ence effect is the one associated with the motional state
[12,13]. In the present paper, we show that decoherence in
the vibrational motion of a trapped ion can be suppressed
by generating, through the techniques of “reservoir engi-
neering” [14], artificial reservoirs associated with properly
chosen pointer observables, which have the states to be
preserved as their eigenstates, and which dominate over
other dissipation processes. We exemplify this procedure
by showing how to protect from decoherence several kinds
of nonclassical states.

Under the hypotheses of Markovian dynamics and
complete positivity [15], a master equation describing the
reduced dynamics of a system interacting with its envi-
ronment can be written in the Lindblad form
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where r̂ is the reduced density operator of the system in
the interaction picture, and we have neglected the uni-
tary evolution term 2�i�h̄� �Ĥ, r̂�. The operators ĉi are
closely related to the system operators present in the inter-
action Hamiltonian and gi measures the strength of the
system-environment coupling. In this case, the pointer
basis is given by the set of all the eigenstates of the op-
erator ĉi . If all ĉi are Hermitian, their eigenstates are
steady states of the master equation (1), which are not af-
fected by the environment [10]. If instead the ĉi’s are not
Hermitian, the states of the pointer basis will not necessar-
ily be steady states of (1). Our strategy for the protection
of a specific quantum state against the environment con-
sists in engineering, via external driving of the system, a
system-environment coupling, so that the net effect is to
add to the master equation (1) an extra term, yielding

dr̂

dt
� Lr̂ 1 �Geng�2� �2d̂r̂d̂y 2 d̂yd̂r̂ 2 r̂d̂yd̂� .

(2)

The operator d̂ is chosen so that the state one wants to
protect is the only steady state of Eq. (2) without the envi-
ronment term Lr̂. For Geng ¿ g, the steady state of (2)
will be very close to the state to be protected (if the state is
not unique, the term Lr̂ could still induce transitions be-
tween the steady states). Besides, any state of the system
will decay into the state chosen to be protected. Therefore,
this is also a procedure for preparing quantum states in the
presence of decoherence.

In the following we apply this method to the one-
dimensional motion of the center-of-mass of an ion
confined in an electromagnetic trap. The reservoir engi-
neering process will be implemented by letting the ion
interact with several laser beams of adequate frequencies
and intensities, which are quasiresonant to an electronic
transition j1� $ j2� of frequency v21.

For our purposes it is important to consider the ion
to be in the regime of resolved sidebands, given by
nu ¿ G, jVnj, where G is the electronic energy decay
© 2001 The American Physical Society
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rate, nu is the ion vibrational frequency along axis u, and
Vn is the (complex) Rabi frequency corresponding to laser
n, tuned to the kth red vibrational sideband of the ion.
Under these conditions the interaction term corresponding
to laser n, can be described, in the interaction picture, by
[16]

Ĥint�t� � h̄g�Â21d̂ 1 Â12d̂y�

�
1
2

h̄Vn�ihn�kÂ21f̂k�âyâ�âk 1 H.c. , (3)

where g is taken to be real and

f̂k�âyâ� � e2h2
n�2

X̀
l�0

�21�lh2l
n

l! �l 1 k�!
�ây�l âl . (4)

Here the operators â and Â21 are the annihilation opera-
tor of a quantum of the ionic vibrational motion and the
electronic flip operator, respectively. The quantity hn �p

h̄�kn ? u�2�2Mnu is the Lamb-Dicke parameter with re-
spect to the direction of vibration, fixed by the unit vector
u. M is the ion’s mass and kn is the wave vector of laser
n. It is assumed that the Lamb-Dicke parameters corre-
sponding to directions orthogonal to u are much smaller
than one, as it is the case in linear traps.

In the Born-Markov limit, the time evolution of the vi-
bronic density operator r̂ for the direction u (say x) is
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where the second term corresponds to spontaneous emis-
sion with energy relaxation rate G, and

¯̂r �
1
2

Z 1

21
ds W�s�eih� ˆ̄a1 ˆ̄ay�sr̂e2ih� ˆ̄a1 ˆ̄ay�s (6)

accounts for changes of the vibrational energy along the x
direction due to spontaneous emission with angular dis-
tribution W�s� (tilde over operators indicates interaction
picture). Here h � �v21�c�

p
h̄�2Mnx . The last term of

(5) describes the coupling of the center-of-mass motion to
the environment, and has the general form (1). However,
the precise form of this dissipation term is not important
for our purposes.

The matrix elements of (5) with respect to the electronic
basis yield the equations

�̂r11 � 2ig�d̂yr̂21 2 r̂12d̂� 1 G ¯̂r22 1 Lr̂11 , (7)

�̂r22 � 2ig�d̂r̂12 2 r̂21d̂y� 2 Gr̂22 1 Lr̂22 , (8)

�̂r12 � 2ig�d̂yr̂22 2 r̂11d̂y� 2
G

2
r̂12 1 Lr̂12 . (9)

We assume now that the decay rate G is by far the largest
rate in the system. One can then eliminate r̂12 and r̂22
adiabatically. Since L ~ g, one gets

r̂12 � 2�2ig�G� �d̂yr̂22 2 r̂11d̂y� �1 1 O�g�G�� .
(10)
Replacing (10) into (8), we see that r̂22 � O��g�G�2�r̂11.
We can therefore approximate the reduced density operator
for the vibrational mode, r̂y � r̂11 1 r̂22, by r̂11. We
get then, adding up (7) and (8), after replacing r̂12 by
(10) and neglecting terms proportional to r̂22 (except those
proportional also to G) and g�G (we verified numerically
that these are indeed excellent approximations),

�̂ry �
2g2

G
�2d̂r̂y d̂y 2 d̂yd̂r̂y 2 r̂y d̂yd̂�

2 G�r̂22 2 ¯̂r22� 1 Lr̂y . (11)

We will base our considerations on this equation. The
first term on the right-hand side (rhs) has the form (1).
This is the “engineered reservoir,” with a decay constant
Geng � 4g2�G.

Neglecting terms of O�h4� in the expansion of the sec-
ond term on the rhs of Eq. (11), one can show that its
contribution is 	�h2�5� �4g2�G�r̂y , that is, �2h2�5� mul-
tiplied by the engineered-reservoir term. For h � 0.25,
this yields a factor of 	1�40, a small correction, which is,
however, fully taken into account in our numerical simu-
lations. Therefore, the action of the engineered reservoir
will be the dominant one as long as Geng ¿ g.

In recent experiments with trapped ions, random
fields seem to play an important role in the decoherence
process [13]. Their effect may also be described by
(1). We write the random field as E�t� � E �1��t� 3

exp�2int� 1 E �2��t� exp�int�, and the interaction
Hamiltonian in the rotating wave approximation as
[13]: Ĥ � 2m�E �1��t�ây 1 E �2��t�â�. Iterating the
equation of motion for the density operator, and us-
ing that for stationary fields [17] 
E �2��t�E �2��t0�� �

E �1��t�E �1��t0�� � 0, we get, in the Markovian limit

E �1��t�E �2��t0�� � 2Dd�t 2 t0�,

�̂r � �m2D�h̄2� �2âr̂ây 2 âyâr̂ 2 r̂âyâ

1 2âyr̂â 2 ââyr̂ 2 r̂âây� , (12)

which corresponds to an infinite temperature thermal reser-
voir (thermal photon number NT ! `, dissipation rate
g ! 0, gNT constant). Both random fields and thermal
reservoirs will be considered in our simulations.

In order to protect a state jc�, we look for d̂ such that
d̂jc� � ljc� with l � 0, and make sure that there is no
further eigenstate jf� of d̂ such that �d̂, d̂y� jf� � 0. This
implies that jc� is the only pure steady state of (2) without
Lr̂. Since Geng ¿ g, this yields a good approximation
of the corresponding steady state of (2).

We consider first the protection of the class of states
jc� �

PN
n�0 cnjn�, where jn� is an energy eigenstate

of the vibrational motion and cn fi 0. The operator
d̂ � ĝ�n̂�â 1 ĥ�n̂� has jc� as its only eigenstate with
eigenvalue l � 0 provided the eigenvalues of ĝ�n̂� and
ĥ�n̂� fulfill the constraints g�m� � 2�h�m��

p
m 1 1 �cm�

cm11 (m � 0, . . . , N 2 1) and N is the first zero of h�m�.
For this case, jc� is the only steady state of (2).
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Inspection of Eqs. (3) and (4) shows that the operator ĝ�n̂�â can be engineered by driving the ion with N laser
fields, tuned to the first vibrational sideband of the ion. The values of the Rabi frequencies Vn of the N lasers are given
by the following system of N linear equations (m � 0, . . . , N 2 1):

NX
n�1

e2h2
n�2hnVn

mX
l�0

�21�lh2l
n

l! �l 1 1�!
m!

�m 2 l�!
�

ih�m�
p

m 1 1

cm

cm11
, (13)
where the Lamb-Dicke parameters hn depend on the ori-
entation of the laser fields with respect to the x direction.
The operator ĥ�n̂� is constructed by driving the ion with
two laser fields resonant with the electronic transition, one
of them propagating orthogonal to the x axis (say y direc-
tion, with hy ø 1). The Rabi frequencies of these two
lasers are related by Vy � 2VxLN �h2

x �, where LN �x� is
a Laguerre polynomial of order N (hx should not be too
large for the first zero of h�m� to occur at m � N). From
(13) it follows that our method is sensitive only to relative
intensity and phase fluctuations, since state selection is de-
termined by ratios of Rabi frequencies. These quantities
are much easier to stabilize than the absolute intensities
and phases of the laser beams.

An important representative of the class of states
presented above is the “qubit" state jc� � c0j0� 1 c1j1�.
This state can be generated and protected against the
action of an external reservoir with just three lasers, two
of them, with Rabi frequencies Vx , Vy , used to build up
h�m�, and the third one with Rabi frequency V1, so as
to satisfy Eq. (13). Choosing h1 � hx � h, these Rabi
frequencies must satisfy the following condition:

hVx

iV1
� 2

c1

c0
and

Vy

iV1
� e2h2�2 c1

c0

1 2 h2

h
. (14)

In this case, Geng � h2V
2
1�G in Eq. (2). In order for

the corresponding reservoir to win over the environment
reservoir, one needs h2V

2
1�G ¿ g, but at the same

time G, V1 ø n and G ¿ hV1. These requirements
are satisfied if G � 4 MHz, V1 � 2 MHz, h � 0.2,
n � 20 30 MHz, as long as g ø h2V

2
1�G � 40 kHz.

Figure 1a displays the fidelity F�t� � Tr� r̂�0�r̂�t��, with
the ion initially in the vibrational state jc� �

1
2 �j0� 1 j1��

[all our numerical simulations are obtained from Eq. (5),
and we always assume the ion to be initially in the
electronic ground state]. Both a thermal and a random
field reservoir have been considered. As can be seen, the
system rapidly reaches a steady state with fidelity very
close to unity.

One should remark that feedback procedures [9] do not
protect states involving superpositions of j0� and j1�, since
the loss of one photon by the state j1� completely erases
any phase information about the original state. Our proce-
dure, however, works very well in this case.

Another interesting example is the approximate phase
state [18] jc� � �1�

p
N 1 1 �

PN
n�0 einfjn�, which can be

generated and protected by N 1 2 lasers. Figure 1b dis-
plays the fidelity F�t�, for N � 3, and h’s in the range
0.1 0.2.

A class of states which is specially fragile against the
action of decoherence is the one formed by mesoscopic
4990
superpositions of coherent states. Under action of an
external reservoir, these states decay to a mixture of coher-
ent states in an extremely short time, inversely proportional
to the distance between the two states in phase space [3].
Our technique can also be applied to the Schrödinger-cat-
like state [19] jf1� � �ja� 1 ij 2 a���

p
2. Since jf1�

has no “hole” in its number distribution, it can be approxi-
mated by one of the states jc� discussed above. Conse-
quently, one could, with the use of N 1 2 lasers, generate
and protect the state jc� �

PN
n�0 cnjn�, with the first N

coefficients cn equal to the corresponding coefficients of
jf1�. One should notice, however, that it is possible in
this case to find directly a Lindblad operator d̂, which has
the state jf1� as its only eigenstate with zero eigenvalue:
d̂ � T âT y � eipn̂â 1 ia. Here T is the unitary op-
erator exp�ipn̂�n̂ 2 1��2� exp�aây 2 a�â�, which yields
jf1� when applied to the vacuum. For this choice of d̂, we
plot in Fig. 1c the fidelity F�t�, for the initial state jf1�.
An open problem is how to engineer this operator with a
finite number of laser beams.

Finally, we describe the protection of a squeezed state.
We set d̂ � â 1 xây, where x � tanhr and r is the
squeezing factor. The corresponding setup consists of two
lasers along the direction of squeezing, resonant with the
first red (laser 1) and the first blue (laser 2) sidebands,
and with Rabi frequencies satisfying V2�V1 � x [14].
The numerical simulation is shown for r � 0.6 in Fig. 1d,
for a realistic set of parameters (h1 � h2 � h � 0.05).
Higher values of squeezing render our method less effec-
tive, since the presence of higher photon numbers would
lead to stronger dissipation by the “natural” reservoir.

In conclusion, we have suggested a method for protect-
ing quantum states of the vibrational motion of a trapped
ion against decoherence by generating artificial reservoirs
which have the states to be protected as pointer states. It
differs from dynamical decoupling techniques [11] (which
require pulses with durations smaller than the reservoir
correlation time) and feedback techniques [9] (which have
been proposed for the protection of “cat-like” states). More
general pointer states can be generated by applying unitary
transformations to the states and operators discussed here.
Indeed, the transformed states would still be the sole steady
solutions of the master equation with the transformed op-
erators. This is precisely the mechanism which leads to the
protection of the states jf1� above, and also of squeezed
states, since they are related by unitary transformations
to the vacuum, which is the only steady state for a zero-
temperature reservoir (for which d̂ � â). Our method is
experimentally robust, since it depends only on the stabi-
lization of relative intensities and phases, and leads to the
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FIG. 1. Time evolution of the fidelity F�t� for several ini-
tial nonclassical states, in the presence of a thermal reservoir
with 
nth� � 0.5 (full curves and lozenges) and a random field
(dashed curves and crosses). For the lozenges and crosses,
Geng � 0. The full and dashed curves correspond to Geng �
40g for (a), (b), and (d), and Geng � 150g for (c). The non-
classical states are the following: (a) jc� � �1�

p
2 � �j0� 1 j1��;

(b) jc� �
1
2

P3
n�0 jn�; (c) jc� � �1�

p
2 � �ja� 1 ij2a��, with

a2 � 3; and (d) vacuum squeezed state with r � 0.6.

successful generation and protection of qubits, squeezed
states, and approximate phase and Schrödinger-cat-like
states, even in the deleterious presence of random elec-
tric fields.
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