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A set of parallel replicas of a single simulation can be statistically coupled to closely approximate long
trajectories. In many cases, this produces nearly linear speedup over a single simulation (M times faster
with M simulations), rendering previously intractable problems within reach of large computer clusters.
Interestingly, by varying the coupling of the parallel simulations, it is possible in some systems to obtain
greater than linear speedup. The methods are generalizable to any search algorithm with long residence

times in intermediate states.
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Many simulations of interest to science become in-
tractable for a single computer as the number of degrees
of freedom increase. Thus, one of the most important
problems of scientific computing is large-scale paralleliza-
tion of algorithms. Traditional parallelization schemes
require extremely fast communication between multiple
processors and frequently do not scale to large numbers of
processors. However, it is possible to statistically couple
many simulations run in parallel to obtain a result that is
equivalent to a longer simulation, effectively parallelizing
this process [1]. In this way, rare events can be simulated in
a much shorter time than by single processor simulations,
or even than by running the same number of uncoupled
simulations. This parallelization can utilize much slower
communication times (minutes to hours, as opposed to mi-
croseconds) and thus makes many computationally inten-
sive simulations accessible to clusters of PC’s, instead of
only large supercomputers, and in many cases may scale
to hundreds or thousands of processors [2].

It is obvious that running multiple simulations will im-
prove the rate at which the phase space of the simulation is
explored. However, in general M independent simulations
will not explore the simulation space in the same way as a
single simulation that is M times faster. For example, the
time-dependent behavior of the system under study may
not be captured by this set of parallel simulations. The
question is whether the M simulations can be coupled in
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some way in order to accurately reproduce properties of a
single long simulation.

At least one case of such a coupling algorithm already
exists, for multistate systems where the total process time
is dominated by the waiting time of transitions between
states. It was first applied by Voter [1] to small solid-state
systems under the name of “parallel replica dynamics” and
later by Baker et al. [3] to large-scale atomistic protein
simulations as “ensemble dynamics.” In this case, M simu-
lations are run in parallel. When one of the M simulations
makes a transition to another state, all of the M simula-
tions are reset to the new state of the transitioning simula-
tion, and the M simulations continue from there, repeating
this process of finding transitions. We call this coupling
scheme “transition coupling,” as the independent simula-
tions interact only when they undergo certain long time
scale transitions. While it has currently been applied to
molecular dynamics simulations of condensed phases, it
works for any algorithm whose total time is dominated by
waiting times for rare events of interest.

In this paper, we present a formalism for calculating the
computational speedup (the increase in speed obtained us-
ing M processors versus a single processor, assuming one
simulation per processor) of different coupling schemes
for arbitrary probability distributions, and for interpreting
the simulation data to predict rates. A physical argument
has previously been presented demonstrating that on an
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energy landscape with exponential transitions beween
states, transition coupling should give an exactly linear
speedup of rates with number of simulations and that the
distribution of frequencies of different reaction pathways
should be preserved [1]. Here we present a more mathe-
matical and generalizable derivation, as well as extensions
to various types of more complicated processes. We find
that tremendous speedups in simulating rare events can
be obtained, rendering previously intractable problems
within reach. We first present the algorithm in its most
abstract form and then show how it can be applied to
a specific type of computationally demanding problem,
atomistic condensed matter simulations.

Farallel simulations with two discrete states.— We treat
the system to be simulated as occupying one of N discrete
states, with some time-dependent probability of instanta-
neous transition P;;(¢) from state i to any one of the other
states j at time t. No other physical assumptions are made
about the states at this point.

We first deal with a transition between only two states,
with M independent simulations. If there is a probability
P1,(¢) of transition from state 1 to state 2 at time ¢, then the
probability Py 12(f) of the first of M simulations making
the transition at time ¢ will be M times the probability of
one simulation making a transition in that interval (since
any of the M simulations could be first), multiplied by the
probability of the M — 1 other simulations not yet having
made a transition at time ¢, yielding

1 M-1
Puas) = MPa (1 = [ Po@ar) . )
We note that this can be expressed as
d
Py a(t) = _E[l - F(n, (2)

using F(t) = [y P(t')dt', the cumulative probability
function.

There is one particularly interesting case. If the
movement between states is a Poisson process (a process
in which the rate of transition is both low and constant
with time), then we will have an exponential probability
P1(t) = kexp(—kt) of passing from state 1 to state 2,
with average time (#1) = 1/k, and median time (which is
often a more relevant measure, since for most simulations
we are often more interested in the typical first-passage
time than in the tails of the distribution) of 1/, = In2/k.
Then Fi5(¢) = 1 — exp(—kt), meaning

d
Puia(t) = ——-[1 = Fio(O1M = Mk exp(—Mkt). (3)

This is identical to the probability distribution of a single
simulation with the replacement k — Mk. Since {t) =
1/k and t,/» = In2/k are both functions of 1/k, we obtain
identically linear scaling in time with M independent (not
coupled in any way) simulations.

However, if the probability distribution of transition is
nonexponential, this linear increase in rates will not hold
with M parallel simulations. The exact details will depend
upon the type of simulation and can be easily computed
using the formula above. Some simple cases are of interest,
however. Given a monotonic probability distribution, if the
probability density is less convex (i.e., has a shorter tail)
than an exponential distribution, then {z) will be greater
than --(r). If the probability distribution is more convex
(with a longer tail than an exponential), then the average
times of first passage will be less than ﬁ(l). In this latter
case, the effective rate increases greater than linearly with
number of simulations, a useful fact that will be elaborated
on later in this Letter.

Parallel simulations with many states.— Many systems
of interest will have some number of non-negligible inter-
mediate states, and we now therefore model a system with
N states. In the most general case, we can express the
probability density of transition to the final state N of N

| states from inital state 1 in the form

>

all possible paths
from 1 to N

Pin(t) =

In this case, the P;;(r)’s represent probabilities from the
ith and jth states along the selected path, each of which
has a number of total states traversed n = N. For arbi-
trary probability distributions of transition P;;(r) there is
little to be gained in examining this general case with this
formalism. However, for any specific case, the probability
transition of M uncoupled parallel replicas with arbitrary
transition probabilities can be found by applying Eq. (2) to
the probability distribution generated in Eq. (4). The case
of transition coupled simulations can be obtained by first
applying Eq. (2) to each probability P;;(r) and then chain-
ing these probabilities as in Eq. (4).

There is one specific case that bears closer examination.
If we assume an exponential distribution for each of the
individual transition probabilities P;;(t) = k;; exp(—k;;1),
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then this can be interpreted as a system of differential equa-
tions in the occupation of each state with constant coef-
ficients. The matrix form of the differential equation is
x = Kx, with the matrix K of transition rate constants k;;,
and can be solved to yield x = Z§V=1 c;e; exp(A;1), where
the ¢; are constants dependent on boundary conditions, e;
and A; are the eigenvectors and eigenvalues of K, respec-
tively, and x is the occupancy vector of the N states. In
order to restrict ourselves to physical processes (popula-
tion of all states non-negative; total population in all states
equal to 1), we must add the requirements that the matrix
K is Markovian, meaning that k;; = 0 for i # j, and that
va ki; = 0. These conditions imply that there will be ex-
actly one zero eigenvalue, and all other eigenvalues will
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have negative real parts, and be wholly real or existing as
complex conjugates, and that > ; ¢c; = 0. If we stop the
simulation in the final state (i.e., there is no back transi-
tion from the final state), then we must have ky; = O for
all j. This also implies that xy(r) = Fiy(¢), simplifying
the math.

We are interested in the time-dependent probability of
entry P(t) into the state xy given by dF;,—IZ(t) = i}(—;v. The
average time of transition to the Nth state (¢,y) is then

o0 o N
f ZP(Z) dt = [ Zc,-eiN/\itexp(/\it)dt = Z C‘l)\ﬂ,
0 0 =] i i
(%)

where e;y is the Nth component of the eigenvector e;.

Let us suppose that all the simulations are independent.
For an arbitrary landscape in the exponential transition
case, the probability of arriving in the final state will be
of the form

d N
P(t) = % = ZcieiN)\i exp(A;t), (6)
i=1
where again all A < 0, and the c¢; are such that the
probability is normalized. For notational simplicity, call
a; = cie;y. Computing Fyy(f) for this distribution, and
applying Eq. (2) yields

N N M-1
PM(I) = M|:Z a;A; CXp(/\,‘I):| |:Z a; exp()tit):| .
i=1 i=1
(N

We can see that we cannot make the simple replace-
ment of A; — M A; to obtain a result similar to the M = 1
case with only an increased rate constant, as there are
many cross terms, so in general, we will not have a simple
speedup of M times with M parallel simulations if these
simulations are not coupled.

For an arbitrary set of transition probabilities for un-
coupled simulations, we can find a formula for the average
time of first passage by using Eq. (2) and integrating by
parts:

(ty) = /Ox tPy(t)dt = —fox[l — FioOM™Mdr. (8)

For example, returning to the case of multiple exponentials,
we obtain (noting that exactly one A; = 0)

o (N—1 M
(ty) = — ]0 (Z a; exp(m) dr . ©)

i=1
For the general case, it is impossible to obtain an explicit
formula for the median time 71, for general P(z), although

/M exists

a simple implicit formula Fy(r1 ) =1 — 27
that can be solved numerically in any specific case.
Again in the case of exponential distributions, let us sup-
pose transition coupling with the M simulations. In this
context the transition coupling scheme consists of moving
the M — 1 simulations that remain in state i after the first
transition from i to j to the state j also. Since each tran-

sition from state i to j has an overall rate constant of M

times the single simulation rate constant, then all entries
in the rate matrix will simply be multiplied by M, as each
corresponds to an individual transition. This results in the
multiplication of the eigenvalues by M as well, which im-
plies that {(ty;) = >, ;ﬁ\” = ﬁ<f1>- The average time will
still scale with 1/M, as will the median time, since all time
scales have changed by the same factor M. Using transition
coupling, we can still therefore obtain an M times speedup
using M simulations, and interpret the rate constant k as
M ke, the effective rate of our ensemble simulation.

Calculations with three states.— Although the above ex-
pressions are usually not transparent analytically, it allows
us to find numerical solutions for a large number of sys-
tems. Here we present two that illustrate interesting scaling
properties.

In the simplest case, we have an irreversible transition
from state 1 to state 2 and an irreversible transition from
state 2 to state 3. We can write this as a one-parameter
system in r, where r is the ratio of the smaller rate to
the larger rate. We see (Fig. 1) that we always scale less
than M if the simulations are uncoupled. This lack of
linearity can be significant at large numbers of simulations,
even with low ratios of slow to fast rates. Using transition
coupling, however, we get exactly linear speedup.

Processes with superlinear speedup.—1t is also pos-
sible for uncoupled simulations to be faster than transition
coupling. Imagine a system with three states. From an ini-
tial state, a simulation can go either to a trap or to the final
state. Transitions between the trap and the final state are
not allowed, and thus the trap is “off pathway.” Traps are
very common in complex systems, such as protein folding
[4]. We can see dramatic increases in the speedup of (z)
if we ignore the fast transitions between the trap and the
initial state, particularly when the trap is deep (see Fig. 2).

The explanation for this superlinearity is that a typical
path will spend a considerable amount of time flipping back
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FIG. 1. Speedup versus number of simulations for a two-
barrier system. Shown are plots for a range of r = ky5/k3,
where k5 is the rate constant of the slow barrier crossing, and
ko3 is the rate constant of the fast barrier crossing. If a system
has two sequential transitions that must be crossed to arrive at
the final state, then using uncoupled parallel simulations can
lead to substantial deviation from full linear scaling (bold line).
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and forth from the trap to the initial state. Using multiple
simulations with transition coupling would increase the
rate at which the system would flip back and forth, but the
same percentage of time would still be spent in escaping
from the trap. However, if the simulations are uncoupled,
then not all simulations will be moved into the trap when
a single simulation moves into the trap. These other simu-
lations will thus have an increased chance of finding the
“productive” exit, eliminating disproportionately long
pathways to the final state. As mentioned, average times
are therefore reduced dramatically (Fig. 2), but even the
median times scale at a rate better than M, sometimes by
as much as an order of magnitude. Note we do not have
to be aware of what this off-pathway trap state looks like
to benefit from the speedup, only that it exists.

The relationship between individual simulation time and
overall time.—If we preserve the overall distribution of
transition rates from one state to the others, as occurs
with transition coupling with exponential probability dis-
tributions, then the distribution of the sum of all parallel
simulation times will be equal to the distribution of single
simulation times. If the individual transition probability is
nonexponential, then the total parallelized simulation time
will be different from single simulation time because the
actual simulated process is now subtly different. If the
system scales superlinearly, it is because the ensemble dy-
namics run is equivalent to an atypically fast trajectory. We
are able to gain greater than 100% efficiency in superlin-
ear scaling systems by avoiding slower transition paths. If
the system scales sublinearly, then we are predominantly
simulating paths that occur more slowly than a typical
event. For example, if we have a small minimum which
is not detected, each simulation will spend time in the
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FIG. 2. Speedup in average time of first passage versus num-
ber of simulations for a three-state system with a trap. Plots are
shown for different values of the escape rate ki.p, and there-
fore depth of the trap, with rate of transition from initial state
to trap and to final state both equal to 1.0. An off-pathway
trap with 1/20th the escape rate would lead to speedup in
average time of arrival at the final state of about 2000 with
only 100 simulations using uncoupled simulations. “Deeper”
traps would lead to even greater than linear scaling for aver-
age time of first passage. Transition coupling gives a linear
speedup (bold line).
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associated minimum, whereas in the exactly linear case,
the sum of time spent in the minimum by all simula-
tions would be equivalent to the single simulation time.
Thus, rates are exactly conserved with exponential transi-
tion processes and transition coupling, but are distorted in
other cases.

Application to physical systems.—The above analysis
is for instantaneous transition between clearly delineated
states. How is this abstract transition model similar to
physical systems of interest? We may also ask are the
simple results for exponential distributions of transition
times applicable for any physical systems?

In the case of deep, rugged free energy landscapes, these
conditions are approximately met, and implementations of
transition coupling give speedup which is linear within the
margin of error [3]. Transitions correspond to crossings of
barriers between local minima in the free energy. If barrier
crossing times are negligible with respect to waiting times
for barrier crossing, as we expect in the case of long time
scale motions, we will have a near approximation to instan-
taneous transitions. If additionally, the decorrelation time
within the minima is much less than the waiting time, we
will have a Poisson process, thus implying exponential dis-
tribution of escape times from each individual minimum.
Note that in order to capture the majority of the speedup,
only the minima involved in rate determining steps must
meet this criteria.

Unfortunately, it is not always feasible to successfully
identify all transitions from free energy minima. The most
promising approach currently appears to be using the en-
ergy variance of a simulation to identify changes in local
free energy minima, for the same reason that large peaks
in heat capacity indicate changes in state in a first-order
transition [5], but it is not clear under which conditions
this is valid.

There are physical situations which result in the break-
down of linearity in transition coupling. First, time is
required for equilibration within a given free energy mini-
mum. Second, there is a minimum barrier crossing time
required for a simulation to cross each barrier. Simulations
cannot be sped up to less than the sum of all barrier cross-
ing times along the fastest path, so in all simulations, we
must eventually reach a limit beyond which scaling fails.
For example, a process that naturally takes 100 ns in na-
ture will not necessarily be sped up to 100 fs by using
one million simulations, as the minimum time necessary
could easily be greater than 100 fs. This implies that finite
barrier crossing times will tend to lead to sublinear scal-
ing, so all ensemble dynamics simulations will eventually
be limited by the barrier crossing time. However, there
are strong reasons to believe that this fast time is signifi-
cantly larger than the typical time in many condensed phase
problems, perhaps on the order of 100 to 1000 times or
more [6].

The characterizations described in this paper indicate
that this method should be highly effective for hundreds
or even thousands of computers. Consider again the
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simulation of protein folding dynamics. While the fastest
proteins fold in 10 ws, a single CPU can simulate only
1 ns/day, thus requiring about 30 CPU years. With a
1000 processor cluster, and suitable parallel coupling, one
can simulate 1 ws/day, rendering the problem tractable.
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