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Liu replies The preceding Comment [1] contains two
main points: (i) The measured force is given by its Eq. (2),
a formula derived from free energy balance. (ii) Because
there is no unique way to divide Eq. (2) into bulk and sur-
face contributions, information on force densities cannot
possibly be retrieved as claimed. The first point is well
taken. It is the consideration of [2] that there is a geome-
try in which the magnetic force is

R
Mk=iBk d3r , rather

than of the Kelvin form,
R

Mk=iHk d3r , which was veri-
fied in [3]. The cited free energy balance shows indepen-
dently that both the consideration and the experiment are
correct. The second point, however, is misguided, because
theoretical considerations more detailed than free energy
balance exist. These start from the gradient of the stress
tensor =kPik as the bulk force density, and the stress dif-
ference DPnn as the surface force density. [n and t (here
and below) denote components normal and tangential to
the surface, respectively.]

The canonical view is well rendered in [4], which starts
from the magnetic stress, P

�1�
ik � HiBk 2

1
2H2dik, and

obtains =kP
�1�
ik � Mk=iHk as the bulk, and DP

�1�
nn �

1
2M2

n as the surface, force density. Faced with the ex-
periment of [3], because the integrated sum of both force
densities matches the result, the obvious conclusion is that
the Kelvin form has been verified. This is opposite to our
conclusion, but it does show that division and verification
are possible (and, of course, so is invalidation).

Our points are: (i) The form of p
�1�
ik is incomplete, and

it assumes a special constitutive relation, a slight change of
which yields Mk=iBk as the bulk force density, while the
complete stress renders the total bulk force always zero in
equilibrium, leaving only the surface force operative. (ii)
This surface force varies with geometry, and may be writ-
ten as

R
Mk=iBk d3r and

R
Mk=iHk d3r in two limiting

cases. (iii) Generally speaking, the scientific evidence for
Kelvin’s preference of H over B is flimsy. Because of the
symmetric roles that H and B assume in thermodynam-
ics, they also enter the force expressions in a symmetric
way. If a special equation of state or geometry leads to
the Kelvin form, Mk=iHk , a very similar one leads to the
counterexpression Mk=iBk [2,5].

The correct consideration of the magnetic force starts
with the total Maxwell stress [2,4],

P
tot
ik � HiBk 2 dik�P 1

1
2H2 1

R
dHi R̂Mi� (1)

� HiBk 2 dik�P 1
1
2H2 2

1
2M2 2

R
dBi R̂Mi , (2)

where P is the zero-field pressure, and R̂ � �1 2 r≠�≠r�.
Both expressions are algebraically equivalent; the first de-
pends on the temperature T , density r, and Hi as inde-
pendent variables, the second depends on T , r, and Bi .
The difference in appearance stems from the magnetic con-
tribution to energy, which is

R
Hi dBi and 2

R
Bi dHi ,

respectively. Neglecting P and assuming M � r (i.e.,
R̂M � 0) for given (integration variable) H or B, we either
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return to P
�1�
ik and its above ramifications, especially the

Kelvin force, or obtain P
�2�
ik � HiBk 2

1
2 �H2 2 M2�dik,

with =kP
�2�
ik � Mk=iBk as the bulk, and DP

�2�
nn � 1

2M2
t

as the surface, force density. As stated above, different
constitutive relations lead to different bulk force densities.
(There are signs that the first of the two constitutive rela-
tions is better realized in ferrofluids, but this cries out for
verification and understanding.)

The crucial point here is that neither was measured in
[3] as both expressions neglect the zero-field pressure P.
This is a serious omission, because the density is inhomo-
geneous in the presence of field gradients, such that, =P
cancels any magnetic bulk force, whatever it may be, and
the total volume force vanishes, =kP

tot
ik � 0. The pendu-

lum was indeed suspended by a surface force alone.
This surface force is calculated again from the to-

tal Maxwell stress and is given as its surface integralH
DPtot

nn dA. It may be written as [2]

F �
H

�
R

Mn dBn 1
R

Mt dHt� dA , (3)

which is the nonlinear version of the starting equa-
tion (3) in [3], valid for arbitrary constitutive rela-
tions. [The calculation needs the input that P�T , r� 2R

�r≠�≠r�Mj dHj � G�m, T � is the zero-field Gibbs
potential, a function of T and the chemical poten-
tial m, and a spatial constant in equilibrium.] If M
is predominantly tangential or normal to the sur-
face, we again have

H
�
R

M dH� dA �
R

M=H d3r , orH
�
R

M dB� dA �
R

M=B d3r , respectively.
It will be of interest to also measure the magnetic bulk

force, by tracing the density variation and calculating
=iP�T , r�—the quantity compensating the magnetic
bulk force. However, note its fictitious character: For
constant temperature, we have [2] =kP

tot
ik � r=im,

with =im � �≠m�≠r�=ir 1 �≠m�≠H�=iH vanishing in
equilibrium. The density inhomogeneity (first term) is
a result of the magnetic contribution to the chemical
potential (second term). There is no need to take the latter
as a force density.
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