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Clustering of Arrays of Chaotic Chemical Oscillators by Feedback and Forcing
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Feedback and external forcing are applied to an array of chaotic electrochemical oscillators through
variations in the applied potential. We see transitions from intermittent clusters to stable chaotic clusters
to stable periodic clusters to synchronized states as the feedback gain and forcing amplitude, respectively,
are varied. With forcing up to four clusters are observed in stable states. The transition to synchronization
with feedback occurs by the increase in the size of one cluster at the expense of the others.
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The synchronization of small sets of chaotic oscillators
(usually two) has been investigated theoretically [1] and
in chemical experiments [2]. The collective dynamics of
larger sets of coupled oscillators, however, encompasses a
greater variety of possible dynamics, including turbulent,
partially ordered, ordered, and coherent states [3]. Simula-
tions on coupled maps [4] and differential equations [5–7]
have shown the rich behavior of sets of chaotic oscillators.
However, condensation has only recently been seen in ex-
periments. In a recent paper on arrays of globally coupled
chaotic electrochemical oscillators [8] we have shown the
existence of both stable and intermittent cluster states.

In this Letter we explore the effects of adding feedback
and periodic forcing to the arrays. The feedback and the
forcing are applied to the potential, which affects all os-
cillators. Both effects influence the dynamics of the os-
cillators and thus the resulting behavior differs from that
obtained with the global coupling of the resistors. We show
here the types of cluster formation that occur with forcing
and feedback, and we describe the similarities and differ-
ences among the three types of interactions.

The experiment is carried out with an array of electrodes
as shown in Fig. 1a.

A standard electrochemical cell consisting of a nickel
working electrode array (64 1-mm diameter electrodes in
an 8 3 8 geometry), Hg�Hg2SO4�K2SO4 reference elec-
trode, and a platinum mesh counter electrode (not shown
in the figure) was used. Experiments were carried out in
4.5 M H2SO4 solution at a temperature of 11 ±C. The
working electrodes are embedded in epoxy, and reaction
takes place only at the ends. The potential applied to all
electrodes ���Vapp�t���� is the sum of a constant potential
(V0 � 1.355 V) and a perturbation [dV�t�] due to forcing
or feedback. The currents of the electrodes are measured
independently at a sampling rate of 100 Hz. Since the cur-
rents of all the individual electrodes are measured, the rate
of reaction as a function of position and time is obtained.
The array can be a good approximation to a continuous
system in electrochemistry at space scales larger than that
of the electrode size [9]. Thus discrete measurements
also augment previous experimental studies on forcing
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and feedback of nonchaotic chemical reaction-diffusion
systems [10].

The uncoupled chaotic state is reached via a period-
doubling bifurcation sequence as the applied potential is
changed. An attractor reconstructed by the use of time
delays from the time series of one of the elements is shown
in Fig. 1b. The information dimension is 2.2. A power
spectrum made from the time series is shown in Fig. 1c;
the dominant frequency is 1.3 Hz. The currents from all
64 electrodes taken under conditions in which the coupling
is weak (without added coupling, feedback, or forcing) are
shown in a space/time plot in Fig. 2a.

As a reference for the feedback and forcing studies to
be discussed below, we first show some behavior obtained
with the application of global coupling to the behavior
of Fig. 2a. We have developed a method of altering the
strength of global coupling while holding all other pa-
rameters constant [8]. We employ a series resistor, Rs, and
a set of parallel resistors, Rp , and hold the total resistance,

FIG. 1. (a) Schematic of the apparatus. (b) Reconstructed
chaotic attractor of the current of one of the uncoupled oscil-
lators. (c) The corresponding power spectrum.
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FIG. 2. Space/time plots of local current. Clustering and synchronization obtained through three types of coupling. (a) Uncoupled
oscillators, ´ � 0.0. (b) Base case, ´ � 0.56. (c) Global coupling, ´ � 0.725. (25, 39) cluster configuration. (d) Synchronized
chaotic oscillations via global coupling. ´ � 1.0. (e) (29, 35) cluster configuration with feedback. K � 2.2 mV�mA, ´ � 0.56.
(f) Synchronized periodic oscillations via feedback. K � 3.8 mV�mA, ´ � 0.56. (g) (26, 38) cluster configuration with forcing.
A � 30 mV, v � 1.3 Hz, ´ � 0.56. (h) Synchronized periodic oscillations via forcing. A � 50 mV, v � 1.3 Hz, ´ � 0.56.
Rt , constant. A global coupling parameter, defined as ´ �
Rs�Rt where Rt � Rs 1 Rp�64 � 14.2 V, takes on val-
ues from zero to one as the coupling strength is increased.
The behavior of the 64 elements is shown in Fig. 2b at
´ � 0.56; although the turbulent nature of the uncoupled
case (Fig. 1a) is no longer seen, the state is not quite syn-
chronized or clustered.

As the global coupling is increased, condensation oc-
curs. In Fig. 2c a space/time plot of a stable chaotic state
with two clusters obtained at ´ � 0.725 is shown. Many
stable cluster configurations have been seen in our ex-
periments. We have obtained stable chaotic clusters with
as few as 18 elements. A (25, 39) cluster configuration is
shown in Fig. 2c. (There are 25 and 39 elements in each
of the two clusters, respectively.) On either side of the
cluster state intermittent cluster states (not shown) occur
in which clusters form and fall apart in a transient manner.
The synchronized state seen in Fig. 2d undergoes a chaotic
motion that is approximately the same as that of a single,
uncoupled element.

We now investigate the effects of adding feedback and
periodic forcing to the chaotic array. They are applied to
a base state in which some global coupling is present, that
is, to the behavior seen in Fig. 2b. There are two reasons
for applying the feedback and forcing to a state in which
some coupling is already present rather than to the very
weakly coupled state of ´ � 0. First, we note that the
feedback and forcing at any feedback gain or forcing am-
plitude are not strong enough to synchronize the turbulent
state (´ � 0) under the conditions of these experiments.
Second, we compare the transitions into and through the
cluster states of the feedback and forcing with the globally
coupled case and thus start the sets of experiments at a base
case just below the stable cluster region. The initial state
for all experiments is that shown in Fig. 2b. After applica-
tion of feedback or forcing a transient occurs in which the
system tends to synchronize; this transient synchronized
state then breaks up. Only the final, stationary behavior is
shown here.

The feedback is affected by perturbation of the cir-
cuit potential according to the relationship Vapp�t� � V0 1

dV�t�, dV�t� � K�I�t� 2 Imean�, where K is a feedback
gain, I is the total current (sum of the local currents), and
Imean is the mean of the total current.

Results with feedback are shown in Figs. 2e and 2f.
As in the case with global coupling we see a transition
through a series of states as the control parameter (K)
is increased. The observed states are the following:
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K , 1.8 mV�mA, intermittent chaotic clusters; 1.8 mV�
mA , K , 2.6 mV�mA, chaotic clusters; 2.6 mV�mA ,

K , 3.2 mV�mA, periodic clusters (p4); 3.2 mV�mA ,

K , 3.6 mV�mA, periodic clusters (p2); K .

3.6 mV�mA, periodic (p1) synchronized state.
An example of the chaotic clustered behavior [a (29, 35)

cluster configuration] obtained at a feedback gain of K �
2.2 mV�mA is shown in Fig. 2e. In the chaotic clus-
ter states only configurations containing two clusters were
observed. The specific cluster configuration depends, of
course, on the initial conditions. However, in the chaotic
region the numbers of elements in the two clusters are
approximately evenly balanced; the numbers in the two
clusters ranged from (32, 32) to (28, 36). In the periodic
region, however, the imbalance among cluster sizes be-
came greater as the control parameter was increased. As
the synchronized region is approached, one of the clusters
dominates; thus, for example, at K � 3.2 mV�mA a con-
figuration of (6, 10, 48) is seen; additional increases in K
(to 3.8) lead finally to synchronization. Thus there appears
to be, to the resolution of the experiments, a continuous
change from a clustered to a synchronized state with in-
creasing K . In addition, the length of the transient before
the attainment of a stationary state also increases as the
value of K is increased into the synchronization region.
The synchronized state obtained at K � 3.8 mV�mA is
seen in Fig. 2f. The periodic behavior can be contrasted
to the dynamics of the globally coupled oscillators where
a chaotic synchronized state occurs.

Clustering and synchronization can also be affected
via periodic forcing if the forcing frequency is chosen to
be close to the dominant frequency. We applied forcing
of the circuit potential through Vapp�t� � V0 1 dV�t�,
with dV�t� � A sin�2pvt�. With increasing values of the
forcing amplitude the system goes through the following
sequence: intermittent chaotic clusters; stable chaotic clus-
ters; periodic clusters; periodic synchronized state. Ex-
amples of the resulting behavior are shown in the third
column of Fig. 2. A stable (26, 38) chaotic cluster state is
seen in Fig. 2g. With further increase in forcing ampli-
tude, the system reaches a periodic clustered state. Larger
values lead to periodic synchronization (Fig. 2h).

In order to point out more clearly the differences ob-
tained with the application of global coupling and with
forcing and feedback, we present in Fig. 3 some examples
of the cluster configurations obtained with the latter two
methods.

The configurations obtained with four values of the forc-
ing amplitudes are shown in Figs. 3a1–3a4. Of course, as
always, these are only representative configurations and
many others are possible depending on initial conditions.
The four example configurations shown are chaotic two-
cluster, periodic four-cluster, periodic two-cluster, and pe-
riodic synchronized state. Some configurations obtained
with feedback are shown in Figs. 3b1–3b3 with increas-
ing feedback strength. The sequence shown is chaotic two-
4956
FIG. 3. Representative stable cluster arrangements with
increasing amplitude of forcing [(a1)-(a4), v � 1.3 Hz] and
strength of feedback (b1)-(b3). Forcing: (a1) Two (26, 38)
chaotic clusters, A � 30 mV. (a2) Four (23, 25, 11, 5) periodic
clusters, A � 35 mV. (a3) Two (26, 38) periodic clusters,
A � 45 mV. (a4) Periodic synchronization, A � 50 mV. Feed-
back: (b1) Two (29 1 35) chaotic clusters, K � 2.2 mV�mA.
(b2) Three (6, 10, 48) periodic clusters, K � 3.2 mV�mA.
(b3) Synchronized periodic state, K � 3.8 mV�mA.

cluster, periodic three-cluster, and synchronized periodic
state; note that as the feedback strength is increased one of
the clusters grows until it dominates the entire region.

We have calculated the average pair distances in three-
dimensional state space between each electrode pair of the
64 elements as a function of time. An order parameter
is defined as the fraction of the number of pairs whose
distance in three-dimensional state space is less than some
value [7], here taken to be 0.06 mA (Fig. 4).

The mean order parameter has a value of near zero with-
out coupling (not shown) and one in the synchronized case.
The order parameter for feedback is shown at the top of
the figure. As the feedback gain is increased, the order
parameter reaches a plateau of somewhat above 0.5 in
the stable chaotic cluster region in which the two clus-
ters are approximately the same size. The order parameter
increases to 1.0 with further increase in the gain since one
of the clusters grows and dominates the system. In con-
trast, in the case of external forcing shown in the center
panel, the order parameter drops as the forcing amplitude
is increased over that of the stable cluster region because
of the existence of a four-cluster configuration for which
the order is lower. Additional increases in the forcing am-
plitude lead to a synchronized state with order parameter
of one. In the globally coupled case shown at the bottom,
the stable chaotic cluster region is also at a maximum of
the order parameter because it is bordered on both sides by
regions of intermittent clusters that are less ordered.

Detailed studies of globally coupled ordinary differen-
tial equation models showing clustering and synchroniza-
tion can be found in the literature [7]. We carried out some
limited simulations using two kinetic models for electro-
chemical reactions that have been previously used to show
chaotic behavior of a single oscillator [11]. We present
here the coupled forms of these models in order to point
out more clearly the three types of coupling that have been
used in the experiments. In addition, they might act as a
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FIG. 4. Order parameter r based on mean distance as a func-
tion of global coupling strength. (a) Feedback. (b) Forcing.
(c) Global coupling.

guide for future theoretical studies on this type of reaction
system.
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ek and cj,k are variables corresponding to the double layer
potential and the concentrations of chemical species at the
kth electrode, respectively. The forms of iF (Faradaic cur-
rent) and fj (reaction and transport) are given in the origi-
nal papers. We have coupled these equations through the
addition of the last term in Eq. (1); it consists of contribu-
tions due to the global coupling [12] and to feedback or
forcing. Equations (2) and (3) describe the evolution of
species concentrations at individual electrodes. Behavior
similar to that seen in the experiments (chaotic and pe-
riodic clustering, synchronization, etc.) can be obtained.
For example, up to four periodic clusters are obtained with
forcing as in the experiments. However, a complete quan-
titative description of all the transitions and states obtained
in experiments with feedback and forcing is still not avail-
able. Recently the effect of noise on globally coupled
chaotic oscillators has been shown to play an important
role [6]. Heterogeneities among the elements are likely
also to be important in simulating experimental systems.

We have seen in our experiments that many of the fea-
tures previously seen with the addition of global coupling
through factors such as transport and electric fields appear
also with the application of feedback and forcing. All three
types of interactions bring discrete chaotic oscillators to a
synchronized state. These transitions to ordered states are
not monotonic, however, and the details depend on cou-
pling type. Similar collective dynamics involving stable
and intermittent clustering may arise in a variety of other
types of discrete chaotic systems.
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