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Optical Analogy to Electronic Quantum Corrals
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We describe full multiple-scattering calculations of localized surface photonic states set up by litho-
graphically designed nanostructures made of a finite number of dielectric pads deposited on a planar
surface. The method is based on a numerical solution of the dyadic Dyson’s equation. When the pads
are arranged to form a closed circle, we find field patterns that look like the electronic charge density
recently observed above quantum corrals. We propose two experimental techniques that could be used
to observe these electromagnetic modes in direct space.
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The surface limiting a solid body is well known to
modify locally the physical properties of many materials
(dielectric, metal, or semiconductor) [1]. The interface
breaks the full translation symmetry, thereby producing a
wealth of specific phenomena that have been well identi-
fied in the past (spontaneous polarization, electronic work
function, electronic surface states, surface polaritons, sur-
face enhanced optical properties, . . .).

In scanning probe microscopies, the currently used local
probes give access to more and more accurate represen-
tations of the spatial distributions of a variety of surface
near fields [2]. This progress is associated with a consider-
able improvement of the control of the tip-surface distance.
However, rapid advances of the experimental techniques
have increased the need for understanding how the signals
detected by scanning probe microscopes are related to the
various near fields which are known to be localized at the
surface of materials [3].

In this Letter, we consider the specific example of the
electron local density of states (LDOS). In the vicinity
of a metal-vacuum interface, this quantity tails off expo-
nentially into the vacuum and exhibits lateral oscillations
around surface defects [4]. At the immediate proximity
of close-packed surfaces of noble metal, these states can
be probed using a scanning tunneling microscope (STM)
[5–7]. Recently, the STM technique was applied to as-
semble circular corrals made of iron atoms adsorbed on
the Cu(111) surface [5,6]. Subsequent STM images then
showed that the electronic LDOS inside the corral revealed
the electron eigenmodes sustained by the assembled struc-
ture. Several theoretical accounts of this experiment have
been reported [8,9]. Specifically, based on the Green func-
tion method, a complete electron LDOS calculation associ-
ated with the corral geometry was performed by Crampin
and Bryant [9].
950 0031-9007�01�86(21)�4950(4)$15.00
In optics, the universal role played by the photonic
LDOS in the proper description of surface optical
phenomena was clearly identified in the past [10].

(i) For example, in the context of scanning near-field
optical microscopy (SNOM) in illumination mode [11], it
is observed experimentally that the images are not neces-
sarily correlated to the underlying topography such as in
a classical far-field microscope. A question still debated
today deals with identifying the physical quantity which
drives the variation of intensity in a SNOM experiment.
The photonic LDOS might be the key to understanding
such experiments.

(ii) The electromagnetic LDOS also appears as a con-
stant factor in Planck’s law of blackbody radiation. This
constant factor counts only radiative eigenmodes. When
dealing with realistic surfaces, nonradiative eigenmodes
may also exist. They can also store energy, thereby affect-
ing the thermal properties of surfaces. The optical corral
is an example of tailoring such nonradiative eigenmodes.

(iii) The fluorescence of atoms and molecules is driven
by the optical LDOS. It is thus possible to control the
fluorescence signal of a set of atoms or molecules which
would be deposited inside the corral relative to the refer-
ence level of the same amount of molecules which would
be deposited outside the corral.

Well known as a main ingredient of the earliest theories
of STM, the LDOS is not commonly used in electrody-
namics [12,10]. In surface physics, the concept of LDOS
r�r, v� is mostly applied to electrons so that r�r, v�dr
corresponds to the probability of finding an electron of en-
ergy h̄v in an infinitesimal volume dr centered at point
r above a surface. This scalar function is directly related
to the square moduli of all possible electronic wave func-
tions associated with this energy. In the case of photons,
the most widely used formulation relies on the calculation
© 2001 The American Physical Society
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of the electric field susceptibility G�r, r, v� [12]. The
physical link between r�r, v� and the response function
G�r, r, v� is established as follows. We start from the
probability to detect the intensity of the electric field asso-
ciated with photons of energy h̄v at a given position r:

r�r, v� �
X
n

d�k2
0 2 k2

n� jEn�r, vn�j2, (1)

where k0 � v�c and En�r, vn� represents the amplitude
of the normalized electric field associated with the nth
electromagnetic modeZ

jEn�r, vn�j2 dr � 1 . (2)

These modes obey the wave equation

2= ^ = ^ En�r, vn� 1 k2
nEn�r, vn� � 0 (3)

and a closure formula [I is the unit dyadic and d�r 2 r0�
is the Dirac delta function]X
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By using the well known representation of the Dirac delta
function (Im denotes the imaginary part), we can write
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From the equation which defines the field susceptibility

2=^=^G�r, r0, v� 1 k2
0G�r, r0, v� �24pk2

0Id�r 2 r0�

(6)

and the above closure relation (4), we can deduce the spec-
tral representation of G as a function of the modal ampli-
tudes En:

G�r, r0, v� � 24pk2
0

X
n

µ
En�r, vn�E �

n �r0, vn�
k2

0 2 k2
n

∂
. (7)

By comparing the relations (7) and (5), we find

r�r, v� �
1

4p2k2
0

Im�TrG�r, r, v�� . (8)

Let us note that this scalar quantity is the only quantita-
tive way to describe the continuous part of the spectrum
of any system independently of the excitation mode. In
the context of optics, this means that the LDOS provides
spectroscopic information which is intrinsically indepen-
dent of any particular illumination mode. The main dif-
ficulty lies in the computation of the G�r, r, v� dyadic
above the sample. When dealing with lithographically de-
signed nanostructures deposited on a surface (cf. Fig. 1),
the current developments of computation methods in real
space provide powerful tools to derive the electromagnetic
response G�r, r, v� [13]. Indeed, the field-susceptibility
tensor can be computed by solving numerically a dis-
cretization of the Dyson equation:
FIG. 1. Schematic drawing illustrating lithographically
designed nanostructures on a transparent sample (dielectric
constant es � 2.25). Rk and ri represent, respectively, the
positions of the discretization cells inside the source region (di-
electric constant e � n2

pad � 4.84) and the positions explored
in the observation plane.

G�ri, ri, v� � S�ri, ri, v�

1

nX
k�1

xk�Rk, v�S�ri, Rk, v�

? G�Rk, ri, v� , (9)

where the source domain (i.e., the nanostructures) has been
divided into n meshes centered at Rk (k � 1, . . . , n) and
where ri is any point in the observation plane. The size
of each discretization cell Vk and the dielectric function
e�Rk, v� of the nanostructures enters in the definition of

xk�Rk, v� � �e�Rk, v� 2 1�Vk�4p . (10)

In Eq. (9), S represents the field susceptibility in the ab-
sence of nanostructures (i.e., associated with the bare plane
surface). It is usually expressed as a sum of two contribu-
tions,

S�r, r0, v� � S0�r, r0, v� 1 Ssurf�r, r0, v� , (11)

where S0�r, r0, v� defines the free-space field susceptibil-
ity

S0�r, r0, v� � �k2
0I 1 =r=r�

eik0jr2r0j

jr 2 r0j
. (12)

The contribution Ssurf�r, r0, v� is generated by the bare
surface alone [13]. The numerical procedure described in
[14] solves Dyson’s equation (9) with high precision so
that we can obtain reliable numerical data of the LDOS
close to arbitrary nanostructures deposited on a surface.

In the absence of any sample, Eq. (9) reduces to
S0�r, r0, v� [Eq. (12)], and the corresponding LDOS
[Eq. (8)] simplifies to give

rvacuum�r, v� �
k0

2p2 , (13)

namely, the familiar free-space electromagnetic LDOS (ex-
pressed in a k2

0 unit) which enters Planck’s blackbody ra-
diation law. The presence of a lithographically designed
sample locally modifies the density of available electro-
magnetic modes. This change of optical LDOS is defined
by the difference between the total and vacuum LDOS:

Dr�r, v� �
1

4p2k2
0

Im�TrG�r, r, v�� 2
k0

2p2 . (14)
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We have applied this technique (cf. Fig. 2) to visualize the
evolution of the change of optical LDOS when gradually
passing from a disordered geometry to a perfect circular
corral. Each nanoscopic pad, of optical index npad � 2.2,
is a truncated cylinder 100 nm high and 100 nm in diame-
ter. The diameter of the final circular pattern is fixed at
3.6 mm (cf. Fig. 2c). Such optical corrals are feasible by
current lithography techniques on a plane substrate.

In Fig. 2a we observe concentric rings around each
individual pad. The change of optical LDOS increases
strongly just above each pad. This spatial confinement
of the electromagnetic LDOS is related to evanescent

FIG. 2. Evolution of the change of optical LDOS Dr�r, v�
when passing from disordered to ordered structures arranged to
form a circular corral. The three calculations have been made
at the wavelength l � 440 nm.
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states generated by each individual pads. These particular
states exist only in the near-field zone where they are pro-
duced by the nanostructures themselves. Mathematically,
they mainly originate from the free space propagator
S0�r, r0, v� [cf. Eq. (12)] that displays a r23 short range
behavior. Consequently, by increasing the change of
optical LDOS in the very near-field zone, each pad
allows high resolution to be achieved when observed with
scanning near-field optical microscopes [11]. The period
p of the fringe patterns surrounding the pads is merely
related to the considered wavelength by the usual relation
p � l�2 � pc�v. This result points out a fundamental
difference between optical and electron LDOS. In the
case of electrons at the surface of a metal, the fringe
period is inversely proportional to the square root of the
surface electron effective mass. Figure 2c displays the
change of the optical LDOS pattern above a perfectly
circular array (so-called corral) of dielectric pads. In this
simulation, the average diameter of the ring (pad center to
pad center) is 3.6 mm. The striking feature of this map is
the strong modulation of the change of LDOS inside the
corral that reflects the electromagnetic states sustained by
the corral which are localized at the surface.

We now focus on the spectral properties of the optical
corral of Fig. 2c. In Fig. 3, we present the variation of
the change of optical LDOS, 50 nm above the surface, at
the corral center, versus the wavelength in vacuum. The
corresponding spectrum displays a series of resonant lev-
els corresponding to the electromagnetic states associated
with a circular truncated box. In spite of similarities with
electrons near dense metal surfaces, some specific behav-
ior occurs with light. Particularly, the smoothness of the
equivalent potential barrier generated by standard dielec-
tric materials can prevent a sufficient localization inside
the corral. This effect can be compensated by using high
optical index materials and by increasing the height of the
structures.
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FIG. 3. Variation of the change of electromagnetic LDOS
Dr�r, v� at the center of the corral versus the wavelength l.
Inside the corral a series of resonances can be identified.
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FIG. 4. Variation of the change of electromagnetic LDOS
Dr�r, v� for a circular corral along the OX axis.

Figure 4 shows a crosscut of Fig. 2c. It displays more
clearly the periodic oscillations as well as the shape of
the central peak. This calculation has been performed at
the first resonance of the LDOS spectrum (Fig. 3), i.e.,
for l � 440 nm. If we compare this result with the solid
curve of Fig. (2b) of Ref. [6], we note the strong analogy
between the wavelike behavior of confined electrons and
photons.

Unlike what happens with the usual STM imaging tech-
niques, a direct measurement, in the visible range, of the
optical LDOS requires a specific microscope design. At
first sight, at least two issues should be considered.

(i) The first one relies on the analogy between electronic
STM and photon scanning tunneling microscope (PSTM)
[15]. In the electron STM, the presence of an isotropic
electron gas under the surface of the metal enables a spon-
taneous incoherent excitation of all modal directions near
the Fermi level to be achieved. In optics, to excite the com-
plete change of LDOS, a modified version of the standard
PSTM should include an isotropical incoherent illumina-
tion device that would allow all possible incident angles
to be excited simultaneously. With this configuration, the
wavelength dependence of the change of optical LDOS can
be easily recorded by scanning the incident laser frequency.

(ii) A second method is based on the control of the
fluorescence decay of an atom or a molecular level of
energy h̄v0 [16]. Indeed, as proved by a recently published
paper [17], near-field imaging of a sample with a single
molecule has become possible. In a similar context, such
pointlike detectors should provide optimal readings of the
change of LDOS by locally measuring the fluorescence
decay rate Gij . Indeed, according to Fermi’s golden rule,
this quantity is given by [10]

Gij ~ Mijr�rm, v0� , (15)

where Mij is a matrix element that connects excited and
fundamental states. Thus, for each position rm of the
probing molecule with respect to the sample, the measure-
ment of Gij supplies a signal proportional to the change
of electromagnetic LDOS at the fluorescence frequency.
Although, the validity range of Fermi’s golden rule may
become questionable in particular situations where local
field effects are important [18] (i.e., in the presence of an
optical cavity), the open surface system (the corral) con-
sidered here does not sustain high quality factor modes.
Consequently, Eq. (15) remains reliable for a large range
of molecule to surface distances [16].

In conclusion, we have performed full multiple-
scattering calculations of the change of an electromagnetic
LDOS near-surface structure of both arbitrary nature and
profile. These calculations, based on solving numerically
the dyadic Dyson equation, provide very stable numerical
solutions, even for complex geometries. This analysis has
allowed us to bring to the fore fundamental analogies and
differences between electromagnetic waves and electrons
confined by corral structures.
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